
A secure and flexible backup system in Haskell

DIKU

Keywords: DIKU, master’s thesis, backup, deduplication, garbage collection, b-tree,
crash-safety, security, implementation, Haskell.

Nøgleord: DIKU, speciale, backup, deduplikering, spildopsamling, b-træ, crash-
sikkerhed, sikkerhed, implementering, Haskell.

Formalities:
Start date: 5th of September 2011

End date: 16th of April 2012

Defence date (latest): 30th of April 2012

Subject to: We reserve all rights over developed design and/or software.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen

Students: Johan Brinch <zerrez@diku.dk>,
Morten Brøns-Pedersen <mortenbp@diku.dk>

Supervisor: Ken Friis Larsen <kflarsen@diku.dk>

Dept. of Computer Science,
University of Copenhagen

2

Abstract

Hindsight is a backup system providing guaranteed safe backup to
untrusted sources such as SSH, Amazon S3 or DropBox.

We employ concurrent b-tree for storing log data, as opposed to the
more common transactional database. This choice has two beneficial
side effects: a) more flexible handling of program crashes (which allows
resuming progress); and b) compression and lazy retrieval of log data
(which allows efficient snapshot inspection).

In this report, we present the design and a prototype implementation
written in Haskell. Our prototype implements conservative garbage
collection, but we give a comprehensive discussion of other techniques
as well. We compare our prototype to several other systems and present
benchmarks.

Additional material. In addition to this report, we have produced a
poster and a series of slides. The poster was used at an open day event the
9th of Marts 2012, at the H.C. Ørsted institute at Copenhagen University.
We used the slides during a presentation at the 13th annual Open Source
Days conference.

The poster and slides are available at:
http://hind.sight.dk/doc/poster.pdf
http://hind.sight.dk/doc/slides.pdf

The source code as described in this report is available here:
hind.sight.dk/src/hindsight.tar.gz

The latest version of Hindsight can be found here:
http://hind.sight.dk

Acknowledgements. We would like to thank the following people
who helped improve this project and the resulting documents:

Our supervisor Ken Friis Larsen for guidance. The good people of
the Haskell mailing list for their elaborate answers. The GHC developers
for responding quickly to bug reports. Thomas Conway for discussion
and input on implementing a concurrent b-tree. Everyone involved with
proof reading the report (especially Mathias Svensson and Lisbeth Brinch).
The crew behind Open Source Days for letting us talk. Brian Vinter and
Jesper Rude Selknæs for lending us a server with +5TB disk space. Fellow
student Jesper Reenberg for commentary and LATEX assistance. And Jesper
Louis Andersen for being awesome as always.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

http://hind.sight.dk/doc/poster.pdf
http://hind.sight.dk/doc/slides.pdf
hind.sight.dk/src/hindsight.tar.gz
http://hind.sight.dk

Contents

Contents 3

1 Introduction 5
1.1 Motivation . 7

1.2 Scope . 8

1.3 Background . 9

1.4 Overview . 11

2 Analysis 12
2.1 Functionality . 12

2.2 Properties . 12

2.3 Cost-benefit . 15

3 Design 17
3.1 API . 18

3.2 Overview . 21

3.3 Terminology . 24

3.4 Indices . 25

3.5 Deduplication . 28

3.6 Deletion . 33

3.7 Crash Recovery . 43

3.8 Security . 47

3.9 External Storage . 51

3.10 Storage format . 52

3.11 Summary . 53

4 Implementation 55
4.1 Installing and using the prototype 55

4.2 System design . 57

4.3 Indices . 59

4.4 Crash recovery . 66

4.5 Back-end modules . 69

4.6 Deletion . 70

4.7 Security . 73

4.8 Iteratee . 75

5 Evaluation 77

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen 3

CONTENTS 4

5.1 Comparison . 78

5.2 Quality . 83

5.3 B-trees . 84

5.4 Benchmarks . 85

6 Further work 87
6.1 Crash safety . 87

6.2 Asymmetric encryption . 87

6.3 Indices . 88

6.4 Garbage Collection . 89

6.5 B-trees . 90

6.6 Alternative Front-ends . 92

6.7 Alternative back-ends . 93

6.8 Encoding format . 94

7 Conclusion 96

A Benchmarks 97
A.1 B-tree compared to SQLite3 . 97

A.2 Writing log files in bulk . 98

A.3 A million files . 99

A.4 Bit-vector encoded reference lists 102

A.5 Conservative garbage collection 105

A.6 Test on real data . 110

B Die test 121

C Getting and verifying the prebuilt Hindsight 64-bit binary 122

D Correspondence with Thomas Conway on concurrent b-trees 123

Bibliography 129

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

Chapter 1

Introduction

In this report, we present a novel design for a snapshotting backup system
along with a prototype implementation. While our design lends itself to
general key-value storage, our main focus is file system snapshotting. Our
prototype runs on Linux and handles most common file meta-data. It is im-
plemented in Haskell and uses a process model that allows trivial exploitation
of parallelism.

Our design features global deduplication through content-based indexing
[62]; a means for eliminating copies of redundant data. To store log data (the
entire internal state maintained by the backup system), we employ concurrent
b-trees instead of the popular single-file approach, often in the form of a
SQLite database (e.g. as used by S3QL [79] or Brackup [2]). This allows for
efficient updates while drastically decreasing log data overhead – especially
when storing large amounts of data. This decrease is achieved by reusing the
system to store the newly generated log data, hence reapplying deduplication.
Furthermore, the use of b-tree makes it possible to query the structure of
backed up data (e.g search for a file) without all the log data being present
locally.

For inspection, snapshots can be mounted as read-only filesystems through
FUSE [47]. The ability to only download parts of a snapshot’s file structure
makes the filesystem quite responsive.

We discuss several solutions to the problem of deleting snapshots while
retaining global deduplication in a crash-safe manner. This problem is often
solved with reference counting, however this solution seems unpractical to
combine with b-trees.

We propose using reference lists instead. Though not yet implemented,
simulations suggest that the size overhead stemming from the reference lists
is acceptable when encoded as bit-vectors (see section A.4 on page 102).

For our prototype, a simple conservative garbage collector has been imple-
mented. Our tests show that it is able to clean most of the garbage introduced
by deleted snapshots, in at least some use-cases. We are not aware of any other
backup systems, which use conservative garbage collection. The technique can
be combined with an exact garbage collector, which is run on rarer occasions.
We leave this as a topic of further work.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen 5

CHAPTER 1. INTRODUCTION 6

The design assumes an untrusted (but reliable) back-end with a minimal
API, making it suitable for a wide range of storage solutions. Our prototype
can back up to a local file system, Amazon S3 [85], a remote file system via
SSH, and CouchDB [45]. Privacy and data integrity are guaranteed through
encryption and authentication provided by the NaCl high-level cryptographic
library [19].

We compare our prototype to a range of other systems (see section 5.1
on page 78) and present benchmarks (see appendix A on page 97). Our
benchmarks are based on versions of Linux kernel source code, a Linux
virtual machine image and the home directory of one of the authors. The
larger snapshots are around 60GB each.

Our results show that the benefit of content-aware chunking might not be
as great as the wide application [42, 72, 73, 83, 93] of the technique suggests.

The main contributions of our work are:

• A Haskell implementation of eventually balanced concurrent b-trees.
Our implementation is inspired by Larsen and Fagerberg [59] and based
on software transactional memory (STM) [50, 86]. To our knowledge
this is the first implementation of concurrent b-trees utilising relaxed
balancing, although T. Conway has also done some work in the area (see
appendix D on page 123 for a record of our correspondence).

Our b-trees are stored on disk as one file per node, which makes them
ideal for deduplicated storage; few operations lead to few changed files.

• We break with the trend ([79, 93] among others) of storing log data in a
transactional database. We argue that a non-transactional data structure
can lead to increased performance with regard to both time and space
(see section 5.3 on page 84).

In order to maintain global deduplication and crash-safety while fea-
turing deletion of backed up data, we are forced to abandon reference
counting.

We propose the use of reference lists encoded as bit-vectors. We pro-
vide simulations showing that the resulting space overhead is not too
restrictive (see section A.4 on page 102).

• Along with our prototype we give an implementation of a conservative
garbage collector and an evaluation of its effectiveness. We are not
aware of any prior work investigating conservative garbage collection in
a backup system.

• Log data is stored in b-trees which are split across multiple files. It
is possible to operate on parts of our b-trees without all the files be-
ing present. For example, this means that one can search for files or
list/checkout a subdirectory in a snapshot without retrieving the full
log data.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 1. INTRODUCTION 7

Combining this with the usually high redundancy between log data
from consecutive snapshots, yields a speed-up in viewing the changes in
a small subdirectory over a period of time. See section A.3.2 on page 100

for test results.

• An almost complete – and presently usable – prototype implementation
of our design, in Haskell. Our prototype runs on Linux and maintains
most file meta-data.

We benchmark our prototype on real-life data and compare it to other
backup systems.

• A record of our experiences implementing a prototype of our design in
Haskell. We started out basing the prototype on the Haskell Enumerator
library [66] (which is based on work by Kiselyov [56]). However we
gave up on that idea, and wrote a small library for programming with
processes using message passing instead. See section 4.2.1 on page 57

and section 4.8 on page 75.

1.1 Motivation

Several recent surveys show that few people take regular backups, and most
people have lost digital data on one or more occasions [55, 81]. Yet the majority
of the surveyed people are aware of the importance of regular backups.

In this thesis, we describe the design and implementation of a prototype
backup system that we call Hindsight: secure, flexible and efficient. We have
found ourselves annoyed with the available selection of backup systems, and
this has been our main motivation.

Many commercial backup systems are bound to a specific – often propri-
etary – back-end and are closed source. That is a problem because a) different
people have different needs, possibly also depending on the data; b) it pro-
motes vendor lock-in; c) it is hard to assess the reliability and performance of
an essentially unknown back-end; and d) without resorting to reverse engi-
neering (which might even be illegal) it is often impossible to tell if data is
stored responsibly. Many companies are quite vague when describing their
security model, and even general functioning of their products.

Further, the open systems we have seen, all have shortcomings. We discuss
a selection of systems and their properties in section 5.1 on page 78.

Thus it is important to us that our system is as flexible as possible with
regard to back-end and that it is transparent, both in terms of functionality
and security model.

Of course, we also want the system to be practical and usable. We elaborate
on what exactly we mean by this in section 2.2 on page 12, but from the outset
we felt that performance is a big part of it. Thus we devised the following
simple “test” as a guideline during early development. While maybe not
common, we want to be able to handle the following use case:

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 1. INTRODUCTION 8

The user takes a daily snapshot of her home directory. The di-
rectory contains about 1’000 gigabytes data (1 terabyte) spread
over 500.000 files. There is at least one several gigabytes large file
of which a small part changes often (e.g. a database or a virtual
machine image). Some files, such as program caches or temporary
files, change very often and may be written or deleted during a
snapshot.

We assume that the backup system runs in an unreliable environ-
ment, such as a laptop; the Internet connection may drop out, the
battery may run out, or an impatient user may kill the system
during a snapshot.

This scenario has helped us quickly gain an intuition about the feasibility
of an idea; being it a solution to a problem or a new feature.

1.2 Scope

The use case we mentioned above should give some pointers to the scope of
this project. Our main focus is the design and implementation of a backup
system for personal computers.

Though the design focuses on general key-value storage, we do not aim
to provide a general programming framework, ready for use for backups by
other applications. Our prototype is rather a proof of concept which can act
as a building block or guideline for such a framework.

While definitely important, cryptography is not a subject that we allot
much time to discuss. Our approach in that regard is one of less-is-more:
The simpler the model, the more likely we are to get it right. We do however
discuss how the implementation could be extended to follow a more flexible
model (see section 3.8 on page 47).

Our design as described and implemented does not support the sharing
of data between different users. We discuss ways to include the feature, but it
is not fundamental to our design.

The Hindsight prototype acts as a proof of the feasibility of our design,
and hence there is a number of things that we have deemed less important.

In particular we:

1. only support Linux,

2. only provide a simple CLI interface, along with a FUSE-based mount
tool,

3. only support standard Unix file permissions and ownership (e.g. not
extended attributes),

4. are yet to conduct an in-depth source code review,

5. have not performed user tests,

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 1. INTRODUCTION 9

6. do not micro-optimise for speed (in particular there appears to be a
memory leak in our prototype, but this could just be due to the massive
memory overhead of the b-trees; see section 6.5 on page 90 for details).

1.3 Background

Traditionally, backup systems (or tools) were designed to access the smallest
amount of storage during a backup. They were designed to work well for tape
backups, which not long ago was the only affordable mass storage available.
Such tools (e.g Unix dump and cpio) write filesystem snapshots as a single
stream of data to tape. During a backup old snapshots are not accessed,
allowing old tapes to be archived elsewhere.

Snapshots can be full or incremental. A full snapshot is a self-contained
copy of the filesystem, whereas an incremental one only consists of the files
changed since the last snapshot. An incremental snapshot is based on earlier
snapshots in that only files which have changed are backed up. When files
need to be restored from an incremental snapshot, all the snapshots back to
the latest full snapshot are needed. To deal with this chain of dependencies, a
full snapshot is taken reguarly (e.g. once every weekend).

Amanda [36] is a backup system building on tools such as dump and tar.

The decreased cost of disk space has allowed systems to base new snap-
shots on file data (as opposed to just whether or not files have changed) of
prior snapshots, which would be impractical using tapes. Duplicity [42] is
such a system. When taking incremental snapshots, Duplicity will identify
changed files and only save the parts where data has changed. This is funda-
mentally different from storing the files in full, because it requires access to
the contents of the file’s prior version. The process of identifying parts which
are equal and only storing them once is called deduplication; see section 3.5 on
page 28 for details.

While this approach yields more compact backups, it also suffers from the
drawback that these backups cannot be read as-is since file parts are scattered.

A problem with Duplicity (and similar systems such as rsnapshot [83] and
Apple Time Machine [5]) is that deduplication is not applied across files; if
one file has much in common with (or is indeed the same as) another within
the same snapshot, they will still be stored separately.

A solution is to look past files, and instead focus on data blocks. A file
is then represented as a reference to the blocks it consists of. Applying
deduplication to the data blocks now, gives deduplication within and across
files “for free”. Venti [77], which ships with Plan 9 from Bell Labs [76], is
a system that stores data blocks, with deduplication. A front-end to Venti
would traverse the filesystem, divide files into data blocks (in this report called
chunks) and store those blocks through the Venti back-end. A snapshot would
then be a collection of files with references to their chunks.

Since Duplicity keeps no log data, it is possible to rebuild the backed up
data solely from the raw data stored on the back-end. With Venti, the log data

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 1. INTRODUCTION 10

(i.e. the collection of files and references) is needed to give structure to the
raw data. This makes checking out a snapshot’s data more complicated.

Another negative side-effect of deduplication on a data block level is that
deletion is difficult to implement. As a result, Venti does not support it. The
problem arises because file chunks can be shared across multiple snapshots,
and thus it is difficult to tell who references a given chunk. A solution to the
problem should be found among garbage collection techniques; see section 3.6
on page 33 for details.

Cumulus [93] is an example of a system that does support deletion and
deduplication (though not across files). Cumulus takes only full snapshots
and uses deduplication on the log data to avoid an overhead, linear in the
number of snapshots.

A technique referred to as convergent encryption [40] tries to combine safety
with deduplication, by always encrypting the same data block with the same
key. This can be useful in systems that handle data from different users. We
discuss the consequences of this in section 3.8 on page 47 and revisit it as a
topic of further work; see chapter 6 on page 87.

Pastiche [34] is a peer-to-peer backup system that uses convergent encryp-
tion [40] to enable deduplication of file blocks across multiple users. To furhter
improve deduplication in a peer-to-peer system, each peer uses file abstracts
to discover “buddies” with overlapping data. The local state consists of an
append log, that maintains file meta-data and their block descriptors for each
snapshot.

Hindsight goes one step further. It takes full snapshots and does data
block deduplication across all files (in all snapshots), as well as log data. The
size of local log data is linear in the size of unique data backed up. In our
prototype, deletion is supported through conservative garbage collection, but
we discuss other methods as well.

So to recap, we have described the following approaches:

Amanda mixes incremental snapshots, where changed files are saved in full,
with full backups. Uses regular encryption.

Duplicity improves incremental snapshots, by only storing the changed parts
of files. Full snapshots are still supported. Uses regular encryption.

Venti supports block-based deduplication among all data blocks. A front-end
is responsible for applying deduplication to the log data.

Cumulus uses block-based deduplication among blocks belonging to versions
of the same file. Log data is de-duplicated. Uses regular encryption.

Pastiche uses convergent encryption to de-duplicate data across users, while
storing data safely.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 1. INTRODUCTION 11

Hindsight uses block-based deduplication among all data blocks, and de-
duplicates log data as well. Deletion is supported. Uses regular encryp-
tion.

1.4 Overview

The rest of the report is divided into the following chapters.

Analysis The problem of making a backup system is analysed. First, we
clarify what we mean by a backup system. Secondly we list relevant
properties. We conclude with a summery of how properties affect each
other.

Design First we give an overview of the design of our system and summarise
the terminology we use. We proceed with a more detailed description
of the central data structure of our system: indices modelled by external
b-trees. We give running times for a few search queries.

Four largely self contained sections follow. They are concerned with
deduplication, deletion and garbage collection, crash safety and security.

The chapter concludes with a discussion of the storage back-end, the
storage format and a summary.

Implementation We present our prototype, along with cherry-picked parts
of the implementation, the problems we discovered during development
and our solutions to them.

We begin by giving instructions for installing the prototype. Then we go
into details of the implementation. Rather large sections are allotted to
describing the process model we use, our b-trees and crash safety.

Somewhat shorter sections are concerned with back-end modules, dele-
tion and security. We conclude with a short record of our experiences
with the Haskell iteratee and enumerator packages, and how we arrived
at the Erlang style process model we currently use.

Evaluation We start by giving a short record of the development of the design
and our prototype.

Next we give a rather comprehensive comparison of backup systems
based on a selection of properties. We briefly discuss each system.

We assess the quality of our prototype and describe the tests we have
performed. Then we give a summary of our benchmarks. The raw
benchmark results can be found in appendix A on page 97.

Further work We discuss areas that either need attention before the prototype
could be called a mature product, as well as interesting topics for future
study.

Conclusion We summarise the main results and conclude.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

Chapter 2

Analysis

In this section, we discuss what a backup system is and what our expectations
to such a system are.

2.1 Functionality

From a backup system, we expect the following functionality.

Storage: The ability to store the current state of the data, including meta-data
and hierarchical structure. We refer to such state as snapshots. It should
be possible to store multiple snapshots side by side without interfering
with existing snapshots. A backup system should provide mechanisms
for decreasing storage requirements when storing similar snapshots.

Inspection: After storage, one must be able to restore a snapshot. For practical
purposes, it should be possible to limit the retrieval to the needed
structure within a snapshot.

For example, with a file system backup tool it should be possible to
retrieve the small directory diku/speciale without retrieving the much
larger downloads.

The system should also limit the retrieval of structural information. In
the example above, the system should not retrieve a directory listing for
downloads, when inspection diku/speciale.

Deletion: It should be possible to delete old snapshots that are no longer
needed, thereby reclaiming storage. Preferably, it should be possible to
modify an existing snapshot by deleting only parts of it. And of course
without interfering with other snapshots.

2.2 Properties

In addition to the basic functionality listed above, there are some properties
relevant to backup systems. In this section, we present and discuss those
properties.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen 12

CHAPTER 2. ANALYSIS 13

2.2.1 Flexibility

Front-end: How easy it is to implement a new front-end. For example, is
it possible to port the system to another OS without changing its core
components?

Back-end: Which back-end one can choose from. Having multiple back-ends
to choose from prevents vendor lock-in and gives freedom to pick what
fits ones needs: the cheapest; the most reliable; or perhaps the most
transparent.

Modularity: How easy it is to change parts of the system or move logic from
the client to the server and vice versa.

There are two ways to ensure a broad support of back-ends, either a) se-
lect the back-ends to support and implement the required logic directly in
the system; or b) provide the means to extend the system to support new
back-ends.

2.2.2 Performance

The performance of a backup system must be good enough for it to practical.
This applies to all functionality and operations the backup system can handle.
We will consider the following performance measures:

Local space usage: The amount of local storage needed by the system for
temporary and permanent data.

Remote space usage: The amount of remote storage needed by the system.

Time usage: The time the backup system needs, in terms of: computations,
disk IO and network communication.

Transfer: The amount of data that needs to travel over the network during an
operation. Here, we think of the actual bytes that need to be transferred.
This influences time usage.

Scalability

Scalability goes hand in hand with performance. If a scenario forces the system
into either an expensive computation or a large amount of data transfer, the
system does not scale well with regard to that scenario. Typically, a direction
can be identified and it is possible to describe how well the system scales
in that direction. For filesystem backup we have identified the following
directions.

1. The number of files in a snapshot – filesystems can grow very large:
ext4 [63] supports up to 4 billion files.

2. The amount of changed data in a snapshot compared to prior snapshots
(changed and deleted files) – usually, only a few files change regularly,
but occasionally a directory containing a huge project is moved or
deleted, and a lot of files are updated as a result.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 2. ANALYSIS 14

3. The total amount of data used by a snapshot; ext4 supports volume
sizes of up to 260 bytes.

4. The size of an individual file – typically, files are small but then there
are virtual machines and databases. Most files are small, but most bytes
belong to large files [39, 65]. The maximum file size supported by ext4
is 16 · 240 bytes.

5. The length of file paths. ext4 supports file names up to 256 characters.
Combine this with a deep directory structure and you may end up with
file paths of several thousands characters.

6. The amount of meta-data of individual files (permissions, timestamps
etc.). ext4 limits the inode size to 256 bytes.

A general purpose backup system should scale in every thinkable direction
to allow acceptable performance throughout all use cases. However, it is more
likely that a backup system chooses a handful of these to focus on.

2.2.3 Reliability

For the backup system to work in practice it must be reliable. Obviously, you
would want the software to do its work, but what about those special cases
where something fails? What if the system crashes, the network is down, or a
programming error simply breaks something?

As a minimum, we want the software to be able to recover the stored data
in case of a disk crash. Software crashes should be handled without state
corruption and preferably without hurting performance.

2.2.4 Transparency

It is good to know whether your backup tool is working correctly or not. One
way to determine this is to follow the process of a backup and inspect the
data stored from it. The more you know, the easier it is to determine whether
the system does as it claims:

Black box inspection: Whether one can access and list data stored on the
back-end at all. This provides some transparency as to how much
data is stored and what it looks like, though the data itself may not
be understandable. It further allows the user to look for traces of the
original files; something that would not be expected if the backup system
claims to be secure.

White box inspection: Whether one can understand the data stored on the
back-end. If the files being backed up are stored in an easily accessible
format on the back-end, the user will not have to rely on the backup
system to restore them.

Open source: If the backup system is open source software, one does not
need to take the author’s word for its functionality. Here, one has the

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 2. ANALYSIS 15

opportunity to read the code or at least consult others, and hear what
they have to say about it.

2.2.5 Security

Depending on which entities are considered trusted, it can be beneficial to
apply some means of security:

Authentication: To detect intentional (or unintentional, e.g., bit-rot) modifica-
tions by the back-end, the data can be cryptographically authenticated.
This procedure can be combined with privacy protection.

Privacy: The back-end can be shielded off from knowing the data stored as a
protection against privacy intrusion. This can be achieved by a layer of
encryption. Likewise, if the back-end is trusted, the connection from the
client to the back-end can be encrypted to prevent other parties from
eavesdropping.

In a multi-user system, it can be a concern whether other users can
access or deduce information about the system’s local state or work in
progress.

Access Control: The ability to control access to the stored data, both fully
and partially. This includes read, write and delete permissions as well
as permission revocation.

Denial of Service: In a denial of service attack a malicious party can prevent
the system from running or completing a backup. This could for example
be carried out by a malicious user whose data is being backed up by the
system administrator. Examples include system crashes on strange file
names or tricking the system into processing an infinite special file (like
/dev/zero).

2.3 Cost-benefit

It may not be possible to get all the wanted properties listed above, since some
of them counteract each other.

Flexibility in support for back-ends influences everything. If the system
ditches flexibility and moves logic to the back-end, it could gain better
performance and reliability. However, unless the back-end is trusted,
this would likely hurt transparency and security. More flexibility leads
towards transparency: Being able to freely choose a back-end makes it
easier to know what the system is doing.

Performance is hurt by all other properties. When new logic is introduced,
performance is likely to suffer from it. On the other hand, the new logic
may be a trade-off that hurts performance in one area, while improving
it in another (e.g. time and space).

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 2. ANALYSIS 16

Reliability may hurt performance, by maintaining extra state or adding extra
logic to survive a failure. But when the failure comes, this extra logic
can make the system more efficient at recovering and cleaning up.

Security is bad for everything. It does not bring anything beneficial to the
table except security itself. This could explain why some systems choose
to skip this property completely. Others relax the property with methods
such as convergent encryption [1, 3].

Transparency may hurt performance and security, by limiting the freedom to
restructure and transform the stored data, when white box inspection is
required.

In any case, compromise is inevitable.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

Chapter 3

Design

When designing Hindsight we had the following keywords in mind: flexible,
secure and efficient. In this chapter we describe the design of Hindsight, and
discuss the choices and trade-offs that we have made.

These were our expectations of the Hindsight backup system, before we
designed it and implemented it as the prototype:

1. Secure by default: Protects privacy and integrity.

2. Efficient:

Small resource footprint: Low usage of CPU and memory.

Small local space footprint: Low amount of local log data: at most 1%
of the data it represents after deduplication.

Low external space usage: Compression combined with global dedu-
plication across all snapshots.

When transferring: Parallel transfer and limited amount of back-end
requests.

During inspection: Only retrieve the needed data and log data.

Crashes: Recover and reuse as much of the progress as possible.

Scalability: Must handle many files and lots of data in tons of snap-
shots.

3. Transparent:

In security: Well-described and simple security model.

Open source1: The user can review the software herself.

Local back-end: Makes it possible to inspect the stored data.

4. Flexible:

Back-end: Easy to implement support for new back-ends as well as
running with a local back-end for inspection.

1The Hindsight prototype is licensed under GPLv3

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen 17

CHAPTER 3. DESIGN 18

High-level API: An abstraction in form of a high-level API makes it
possible to reuse the Hindsight backup system with other clients.

In the rest of this chapter, we will discuss how our design works and how
it meets these goals. In chapter 4 on page 55, we discuss how we have tried to
make our prototype implementation meet the design. It does not accomplish
all the goals: it does not expose a high-level API (so far it just implements
a traditional disk backup system) and its resource footprint is by no means
small.

Outline. Our prototype implementation focuses on backup from a local
filesystem; It can traverse a directory structure and store files either locally or
remotely through a choice of several back-end modules (e.g. SSH or Amazon
S3).

Figure 3.1 shows the three main components of the prototype. Each
component knows about the one to its right, and the back-end module is
custom tailored to the back-end of choice.

Tr
av

er
se

 fi
les

ys
te

m

Ba
ck

-en
d

m
od

ul
eGET

PUT

DEL

Hindsight
 • Snapshots
 • De-duplication
 • Crash recovery
 • Security
 • Compression
 • Garbage collection

Hindsight prototype implementation

CryptographyFront-end

INSERT

SEARCH

...

Figure 3.1: The main components of the Hindsight prototype.

The center component comprises our design and is what we call Hindsight.
It is responsible for all the bookkeeping in connection with snapshots, dedupli-
cation and garbage collection. We will refer to the data used for book-keeping
as log data. In addition, Hindsight is responsible for security such that no
private data is sent to the back-end module.

We discuss the APIs of Hindsight and the back-end module in the next
section and in section 3.9 on page 51 respectively.

The choice of a filesystem backup tool for our prototype implementation is
quite natural because Hindsight needs such a tool to function. In section 3.2.2
on page 23 we describe how the system uses itself to save log data.

3.1 API

At the heart, Hindsight maps keys to values. Several such mappings can exist
side-by-side. They are mutable and are handled in isolation by Hindsight
(modifying one does not affect the others).

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 19

These mappings reside in the Hindsight repository, which is a directory on
the system where Hindsight runs. Each mapping can be used to represent
data being backed up. For example, the mapping named “home” could
contain the file paths from /home as keys with their data as values, and the
mapping named “etc” the file paths from /etc and so forth.

At any time a snapshot of a mapping can be taken. This copies the map-
ping’s current state and captures it as it looked at that specific time. The new
copy is partially frozen in that only deletion is allowed, and is hereafter stored
on the back-end. The copy is named after its mapping, but with an additional
version number.

We call the mutable mapping, or the in-progress snapshot, the head. We
call a head and the frozen snapshots generated from it a family.

So to recap: In Hindsight, each name covers a list of earlier snapshots, and
an in-progress one called head. Together they are called a family, and are
located within a repository.

Next, we give an outline of the API of Hindsight. This is the exposed
high-level API that is used by a front-end to manage a repository. The API is
divided into three categories depending on the scope of the operations:

1. Head operations work on the head of a family.

2. Snapshot operations work on a specific snapshot within a family.

3. Global operations work on the full repository, and not on just one
snapshot.

3.1.1 Head operations

INSERT (key,value,meta,version) Establishes the mapping

key 7→ (value,meta,version)

in the head. A version is used to quickly discover if the mapping already
exists, in which case it will be ignored. Thus it is important that the
version changes whenever meta or value changes. Alternatively, the
version field can be omitted, in which case the mapping will be inserted
with no checking.

The meta-data is stored directly with its key, which makes retrieval fast.
It should be kept small (≈ 4KB) since many such values needs to fit in
memory. Our prototype places file permissions, modification times, etc.
in the meta field.

DELETE key Removes a key (if it exists) and its associated data from the head.

SNAPSHOT Takes a snapshot of the head, without changing it.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 20

3.1.2 Snapshot operations

SEARCH f This operation gives a general means of searching for keys in a
snapshot. The operation must be supplied with a function f :

f : (key, key) -> bool

Presented with two keys, a and b, the function must answer the question
“Could there be any relevant keys in the interval [a;b]?”. Using different
functions, we can construct a range of different pseudo operations, of
which a few are listed below. An in-depth discussion of how searching
works is given in section 3.4.1 on page 26.

RETRIEVE key Retrieve from the snapshot, the value and meta-data associ-
ated with a specific key.

DELETE key Removes the a key (if it exists) and its associated data from the
snapshot.

DISCARD Removes the whole snapshot. This not only removes every key in
the snapshot, but also the snapshot itself.

In addition, our prototype supports the following pseudo snapshot opera-
tions. These are pseudo operations in the sense that they can be created by
combining SEARCH and RETRIEVE.

Pseudo operations

LIST prefix Takes a key-prefix (which can be empty) and returns every key
in the snapshot with the given prefix.

LISTDIR dir Regards the keys as filepaths. Returns all paths in a given
directory, but not in subdirectories.

CHECKOUT prefix Takes a key prefix and retrieves the data and meta-data
for every key in the snapshot with the given prefix. A variant of this
operation which ignores subdirectories also exists.

3.1.3 Global operations

INIT Creates a new encryption key. This only needs to be done once. See
section 3.8 on page 47 for details.

LIST Returns a list of every snapshot in the system.

SEAL Saves all log data on the back-end. This makes it possible to restore
the system in case of data loss (e.g. disk failure). See section 3.2.2 on
page 23 for details.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 21

3.2 Overview

In this section we give an overview of the design of Hindsight, in order to
give a context in which the rest of the chapter can be read.

As mentioned in the previous section, Hindsight supports multiple named
families of snapshots. Global deduplication on a sub-file level is applied
across all snapshots. See section 3.5 on page 28 for details on deduplication.

By insisting on these features, some parts of the design are already given.
In particular the following must exist.

• An index of snapshots, called the snapshot index.

• For each snapshot an index listing the files with references to their
contents is needed. We call these indices key indices because Hindsight
to some extent resembles a key-value store.

• An index of all known data blocks, called the hash index. We use this
name because data blocks are referenced by their fingerprint which is a
cryptographic hash.

File system

Time

home~925556622

Key index

home~934790682

Key index

home~978215652

Key index

Hash store

Hash index

Back-end

Storage

Network
Snapshot index

Figure 3.2: Hindsight’s main components.

These components are shown in figure 3.2. The vertical line on the left
represents the file system over time. Each snapshot represents a time slice
of the file system. A snapshot is uniquely identified by a timestamp and a
user-supplied family name.

The references from the snapshot index to the key indices are dashed
because of an indirection. This is necessary to support deduplication of log
data. We return to this in section 3.2.2 on page 23.

Data is de-duplicated on a sub-file level. This means that files are divided
into several chunks which are then de-duplicated. In the key indices, each
file path is mapped to a list of references to the chunks that the file has been
divided into.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 22

The fingerprint of each chunk (its hash) and where the chunk is saved on
the back-end is saved in the hash index. This allows Hindsight to perform
online deduplication, where data chunks are de-duplicated as they are saved
(as opposed to some point later).

Before they are transferred to the back-end, chunks are collected into blobs.
The blobs are encrypted and authenticated (see section 3.8 on page 47 for
details on security) before entering the network.

3.2.1 Taking a snapshot

Let us focus our attention on the snapshot process for a minute. Our prototype
traverses the filesystem and inserts each file in the head of the chosen family
(the API was discussed on page 18).

Figure 3.3 on the next page shows how Hindsight stores2 files.

To the left three files (foo, bar and baz) are shown. Each file consists of
meta-data (represented by the circles to the left) and data which is divided
into chunks. We have given the chunks numbers to make them easier to track
through the diagram.

For each file the insertion (key,version,meta,value) is constructed by letting
key be the file’s path, version its inode change time, meta its meta-data and
value its contents. If the file is already present with the same version, then it
will be skipped.

The leftmost vertical line represents the mapping given by the key index.
The meta-data is stored directly in the index (there are several good reasons
to do that; see section 3.10 on page 52), but only the fingerprints of the chunks
are stored.

The next vertical line represents the mapping given by the hash index.
Each chunk’s fingerprint is looked up in the hash index, and if it is determined
that it has already been stored by another snapshot (the shaded chunks and
dashed lines) nothing else happens.

If, however, the chunk is new it is put into a blob and its location (which
blob and where in it) is recorded in the hash index. Finally, when a blob is full
(our prototype uses blobs of up to 2MB, but this number is configurable) it is
compressed, encrypted and authenticated before being saved on the back-end.
Blobs are identified by an ID which is randomly generated when a new blob
is created (our prototype uses 128bit numbers3 for the IDs).

The fact that the same hash index is used for every file in every snapshot
is what gives global de-duplicity. Also notice that data is de-duplicated within
the same snapshot; in the diagram some chunks have the same fingerprint
(they point to the same place on the line representing the hash index). Of
course this is also true for chunks within the same file.

We have deliberately omitted some details of the process to ease the reading
of this overview. In particular, care has to be taken in order to make the system

2Or as Brackup [2] puts it “slices, dices, encrypts and sprays across the net.”
3Generated by AES in counter mode.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 23

Hash store

Hash index

home~925556622

Key index

~/foo
1

~/bar

~/baz

6

Back-end

Storage

1 1

2 3

4 5

6 7

8 9 10

2

4

8

4

8

7

9 9

7

2

Figure 3.3: How data is stored with Hindsight.

resistant to crashes. We will revisit the process of taking a snapshotting in
further detail in section 3.7 on page 43.

3.2.2 Preserving log data

Now that all the user data has been saved, we need to save the log data
generated by Hindsight during this process. Specifically, we need to store the
new indices that represent the snapshots and the updated hash index.

As we will see in section 3.4 on page 25 our indices consist of multiple
small files. This enables us to reuse the system itself to save its own state.
We do this using what we call the secondary run. Here, the Hindsight system
is reused to snapshot the log data from the primary run (that was used to
snapshot user data). The result is a new pair of indices that we call the
secondary indices. These constitute the log data of the secondary run.

In short, the system runs twice: once to snapshot user data and then again
to snapshot the log data from the first run.

This process is illustrated in figure 3.4 on the next page. On the left side of
the figure, we have the primary indices referencing user data. From these, we
use Hindsight to generate the secondary indices that reference the primary
indices. These are small enough to simply store them as tarballs on the back-
end, along with their secondary hash index. The tarballs are randomly named
and the names are stored in the snapshot index. Note that this hash index is
used to reduce redundancy in log data across snapshots.

All the stored tarballs are referenced by the snapshot index, and now we
see why we needed that extra indirection: instead of referencing snapshots
directly by their key index, they are referenced through their secondary
key index. Lastly the snapshot index is saved as a tarball under the name
snapshots, which is the only non-random name on the back-end.

Since the hash index is global and used across all snapshots, we do not
have to store it right away. Instead, we delay this action, and split the saving
of log data into two phases:

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 24

Primary Secondary

pri/code~head

Key index

pri/diku~head

Key index

pri/idx

Hash index

sec/code~head

Key index

sec/diku~head

Key index

sec/pidx~head

Key index

sec/idx

Hash index

Back-end

Storage

Snapshot index

c
o
d
e

d
i
k
u

p
i
d
x

Ta
rb

all
s

snapshots

s
i
d
x

Figure 3.4: Preserving log data

1. Right after a snapshot has completed, its key index is saved. Meanwhile,
the global hash index remains local. This allows the system to recover
files as long as the internal state is not corrupted.

2. At some point, the global hash index and the snapshot index are saved.
The system can now withstand system and hardware crashes by recov-
ering all internal state from the back-end.

This makes it possible to complete several snapshots before committing
the updated hash index, which makes sense for example when using isolated
snapshots, say one per user on the system. Here, the hash index could be
committed after snapshotting all the user home directories.

3.3 Terminology

We give a short recap of the terminology we use:

Chunks: A part of a file. Files can be divided into roughly evenly sized
chunks to promote deduplication effectiveness.

Blobs: A collection of chunks.

Log data: Data kept for bookkeeping. In Hindsight’s case the local log data
consists of

• Hash indices, one primary and one secondary.

• Key indices, two for each head and snapshot, one primary and one
secondary. Additionally one for the primary hash index.

• Snapshot index.

Of the key indices, only the ones belonging to the heads are normally
stored locally (the others might be stored in a cache, but is not needed
for normal operation). Due to deduplication of the primary indices the
space usage is not linear.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 25

The primary and secondary indices are generated by two isolated in-
stances of the system, and so a discussion often applies to either. In
those cases we will ommit “primary” and “secondary”.

When we just write “the key index” we refer to the key index of some
specific head, given by the context.

Hash, chunk hash: The fingerprint of a chunk (see section 3.5 on page 28).

Snapshot: A frozen mapping from keys to values, from some point in the
past. A snapshot belongs to a family.

Head: The current mutable mapping from keys to values. Each family has
exactly one head (which can be empty).

Family: A list of snapshots and a head. A family has a name chosen by the
user.

Repository: A collection of families.

3.4 Indices

Hindsight maintains three kinds of indices as its state (the key, hash and
snapshot indices). These represent its world view and are updated periodically
(using the snapshot and seal commands, see section 4.1.2 on page 56).

Snapshots: The snapshot index lists all snapshots. Each snapshot is stored
with a creation time stamp and a reference to its key index (next). With
this index, Hindsight can efficiently find a named snapshot taken at a
specific point in time.

Keys: Maintains all file paths with their meta-data and references to their
respective data chunks. The references are hashes that reference blobs
through entries in the hash index (next). Hindsight uses this index
during checkout and searching. When a new key index is to be built and
used for a snapshot, the prior version of the index is used as a starting
point (head); thus allowing efficient skipping of unchanged files.

Hashes: Maps hashes of data chunks to their respective blob IDs and off-
sets. This index is used for deduplication, and works as an indirection
between files and their data chunks.

Additionally, this index can be extended with extra data needed for
garbage collection, such as the list of snapshots referencing each chunk
(we discuss reference lists in section 3.6 on page 33).

To ease comprehension, we have left out the indirection between snapshots
and their respective key indices (through the secondary indices). This was
discussed in detail in section 3.2.2 on page 23.

The data structure used for indices is an external b-tree [33] (see sec-
tion 4.3.6 on page 63 for implementation details). The main advantage of

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 26

using a b-tree is that the tree structure – unlike e.g. a SQLite database – splits
naturally into several files. This allows querying against the index, residing
on a back-end, only retrieving relevant parts.

This goes for updating as well: a small change in the index gives small
changes in the b-tree node files, which again gives us a means for eliminating
redundancy across snapshot log data.

3.4.1 Search

For each index, we want to support searching, and in the key index we want
to enable inspection of the hierarchical structure reflected in its keys (e.g.
filesystem directory structure). At the same time, we want to allow our indices
to perform these queries efficiently.

As a compromise, we use a search API that limits the searching operation
in a way that allows the b-tree implementation to execute the search efficiently,
while remaining agnostic towards the actual query:

SEARCH f The operation is given a function f, that defines the query:

f : (key, key) → bool

For a pair of keys (a,b), f answers the question “Could there be any
relevant keys in the closed interval [a;b]?”, with true meaning “Yes”,
and false “No”. Only keys that can be located using f and for which

f(k, k) ; true

are returned (the interval [k;k] contains a single element, k).

By describing the query as a predicate on intervals, the b-tree indices can
cut away irrelevant sub-trees where the predicate cannot be satisfied, directly
in the branch nodes. Thus giving us efficient queries.

Here we show example uses of the search API that can be used to express
various interesting queries (we make use of curried functions, as known from
Standard ML and Haskell). We assume an alphanumeric ordering of keys,
but the exact details are defined by the implementation4. We give worst case
running times as a function of the total number of keys t, and the number of
returned keys r:

Filter all keys according to a predicate function p:O(t)

filter : (k → bool) → (k, k) → bool
filter p (lb, ub) = lb <> ub orelse p lb

Example:

hsFiles k = isSuffix ".hs" k
let files = search (filter hsFiles)

4Further note that in the implementation, the search function returns a monadic value.
However, f is pure as in the examples.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 27

Lookup a specific key k:O(log t)

lookup : k → (k, k) → bool
lookup k (lb, ub) = lb <= k andalso k <= ub

Example:

case search (lookup "thesis/code/Backup.hs") of
[] -> Nothing
[x] -> Just x

Find all keys sharing a chosen prefix s:O(log t + r)
We give an argu-
ment for this run-
ning time in a mo-
ment.

prefix : k → (k, k) → bool
prefix s (lb, ub) =
(lb <= s andalso s <= ub)
orelse isPrefix s lb orelse isPrefix s ub

Example:

(* Emulate Unix "ls --recursive" *)
let folder_ls_r = search (prefix "thesis/code")

Find the contents of a directory dir without recursing into subdirectories:O(log t + r)
The number of in-
spected tree nodes
never exceeds that
of prefix.

listdir dir (lb, ub) =
(* key is file in dir *)
(lb = ub andalso isPrefix dir lb

andalso not (isSubstring "/" (stripPrefix dir lb)))
(* dir is between lower bound and upper bound *)
orelse (lb <= dir andalso dir <= ub)
(* range includes dir: cut if lb and ub are in same subdir *)
orelse (isPrefix dir lb andalso

not (isPrefix dir ub andalso
getSubDir dir lb = getSubDir dir ub))

Example:

(* Emulate Unix "ls" *)
let folder_ls = search (listdir "thesis/code")

Running time of prefix: Keys sharing a common prefix always inhabits
contiguous leaf nodes. Figure 3.5 on the next page shows a small (eventually
balanced) b-tree. The two leaves placed on a gray background share the
chosen prefix.

The green nodes are the nodes that must be inspected. In a b-tree each
branch node holds lower and upper bounds of the keys in each of its sub-trees.
Therefore it can immediately be determined if the subtrees under a branch
node needs to be inspected further. The sub-trees that do not need further
inspection are emphasised with a dashed line.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 28

Below the tree is the full range of keys; the parts marked with red are
the parts that are cut off during the search.

log t

r
Figure 3.5: Searching for keys with a chosen prefix.

In this example we were lucky that the interesting leaves both resided in
the same sub-tree. But that might not always be the case; in the worst case
the leaves are placed in different sub-trees of the root node, adding roughly
another log t to the running time. But to include a third sub-tree in the search
there must be enough leaves of interest to populate a full sub-tree, in which
case the r is the dominating term. Therefore we conclude that the running
time is O(log t + r).

For details on our implementation of b-trees see section 4.3.6 on page 63.

3.5 Deduplication

Deduplication is the process of discovering and eliminating duplicated data.
The goal is to save space by only storing each data object once. In backup
systems, objects are usually either whole files or individual file chunks.

A short and to-the-point introduction to deduplication is given in [46]; a
more in-depth discussion is given in [87].

3.5.1 Online and offline deduplication

Deduplication can work in an online or offline fashion (also referred to as
“inline” and “postprocessing” deduplication, respectively).

Online: With online deduplication whether an object is a duplicate or not is
determined at the moment it arrives, and it is only saved if it is not. This has
the advantage that duplicated objects are never stored, at the cost of the need
to identify them immediately.

Since the deduplication mechanism is in the data path, throughput can be
hindered by it. On the other hand, if the rest of the data path is slow (e.g. disk
or network), then the removing of duplicates early can improve throughput.

Offline: With offline deduplication objects are saved whether duplicates or
not. Another process then (continuously or at timed intervals) looks through
all the stored objects and performs deduplication on them.

The advantage of this is that throughput is not lowered by deduplication.
However, deduplication must happen at some point so the higher throughput

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 29

cannot be held up indefinitely. Further, if the data path is slow, the larger
amount of data that needs to be transferred can hurt performance.

3.5.2 Local vs. global (vs. universal) deduplication

The amount of data objects considered naturally affects the effectiveness of
deduplication. The more objects taken into consideration the larger is the
probability that the next one will be found to be a duplicate.

Local: Only a subset of the known objects are taken into account. The reason
for that is performance; the fewer the objects, the less the work. A common
way to choose the objects to consider is based on file names. When a file
is saved it is de-duplicated against objects from files of the same name (on
the assumption that these files are either the same file, or an earlier version
of it with relatively few changes). A similar method is used by for example
rsnapshot [83]. Another method described by Broder [28] is to compute a
sketch from each file and use them to find similar files.

By only considering a subset of the known objects, not all duplicates
can be identified, and thus local deduplication is often less effective than
global deduplication (next). As an example, if a file is renamed it may not be
de-duplicated.

Global: All the known objects are considered for deduplication. This can
be computationally infeasible if there are extremely many objects, however
deduplication is certain to detect all duplicates within the system.

Universal: If the data-object storage is shared with other users, it is possible
to de-duplicate data not only against one’s own objects, but everyone else’s as
well. However, this comes at the price of lesser security (see section 3.8.4 on
page 50.

3.5.3 Granularity and chunk size

Data is divided into objects. The granularity of these objects is important for
the effectiveness and performance of deduplication.

If the objects are smaller then there will be more duplicates, and the
effectiveness will improve – the chance of identifying equal objects will rise.
On the other hand the increase in the number of objects can hurt performance.

File level: One approach is to regard each file as an object. This has the
advantage of simplicity, and for typical workstation computers it still offers
reasonable performance [65].

Chunking: With file level deduplication, parts of files that are common
cannot be de-duplicated, and a file of which a small part changes over time
will be copied in full each time it is saved. To overcome this problem each file

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 30

is split into several chunks.

How exactly a file is divided into chunks also determines effectiveness.
Generally, smaller chunks are better5. But the boundaries of chunks can also
be important:

If chunks have a fixed size and alignment, and data is inserted or deleted
in a file, it can lead to much of its data being unaligned, thus resulting in new
chunks.

3.5.4 Chunking

In the simplest chunking method a file is split into chunks of a fixed size, and
a fixed alignment (if the file cannot be evenly split, the final chunk will be
smaller). Consider this scenario:

Alice has a large file which she backs up. It is split into fixed-sized
chunks as seen in figure 3.6 on the following page. Now, Alice
inserts her name in the beginning of the file, thus extending it. As
a result, all the data is copied once more.

This happens because the method is using fixed offsets. It only
inspects the chunk at offset 0, not the chunk at offset 5, which
happens to be known (“Alice” being five characters long).

With variable sized chunks, it is possible for them to shrink or grow such that
alignment can be restored. A solution is to base the chunking boundaries on
the content within a data object, rather than the position. Such techniques
have earlier been used to segment data for copy detection [27].

A commonly used method presented by Manber [62] is to compute a
rolling hash of the data, and place a boundary when this hash satisfies some
predicate ([68] and [72] both consider the value of the 13 low-order bits of the
hash to determine boundaries). This works by moving a window over the data
– byte by byte – while updating the hash for each offset to fit the change in
the window. The hash function can be varied, but for performance, it should
allow the rolling hash to be updated efficiently. Examples include Rabin
fingerprints [78] (used in the Low-Bandwith Network File System (LBFS) [68]),
cyclic polynomials [31] and Adler checksums (used in rsync [91]).

Now Alice’s scenario looks a little different:

Almost all of her two files are the same data. With content-aware
chunking, only the three first chunks differ; the rest match up.
The chunking algorithm has quickly recovered to the sequence of
known chunks (see figure 3.6 on the next page).

5Within reasonable limits; references to each chunk must be saved, and so the overhead from
references should be considerably smaller than the chunks.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 31

(a) Fixed (b) Content-aware

Figure 3.6: Chunking strategies

3.5.5 Hashing

Until now we have avoided the question of how data objects are compared.
The simplest approach is just to compare the objects one byte at a time. But
this is impractically slow.

The solution is to fingerprint each object, and compare fingerprints instead.
But since the fingerprints are much smalller than the objects themselves there
will exist collisions. If a collision occurs it will lead to data corruption because
references to different data will in fact reference the same data.

This could be avoided by using fingerprints to detect candidate objects only,
and then compare to the candidates. To perform such comparison, and test
whether the found candidate was in fact the sought object, the objects would
either have to be available locally, or be transferred from the back-end for
comparison. This would either require a lot of local storage, or a lot of data
transfer, whenever known data is being de-duplicated.

If a cryptographic hash [43] is used, the probability of collisions is so
low that it is generally accepted to regard objects with the same hash – i.e.
fingerprint – as equal (for further discussion see section 3.8 on page 47). This
custom is opposed by Henson [52], who advises caution.

3.5.6 Improving performance

To decide if an object is a duplicate, it must be checked whether its fingerprint
is known. Since deduplication systems are generally geared towards massive
amounts of data, it is unlikely that an index of all known fingerprints can fit
in memory [96]. Therefore at least part of the index must reside on disk.

Accessing an on-disk index is an expensive operation. If most of the index
is located on disk, and no other measures are taken, performance is likely to
be impaired.

Zhu et al. [96] discuss techniques for avoiding index lookups. The most
important are:

Summary vector: The purpose of a summary vector is to reduce the number
of times fingerprints are looked up in the index, when they don’t exist; a
summary vector is a conservative summary of the index in that when a
fingerprint is not found in the summary, then it is definitely not in the index
either.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 32

In [96], Bloom filters [24] are used to model summary vectors. Systems
that use Bloom filters for this purpose include [72, 77] and [90].

Locality preserved caching: A cache fills the opposite role of the summary
vector; it provides access to fingerprints which are in the index, without a
lookup.

A traditional cache will have a very high miss rate because fingerprints are
essentially random, and thus it is impossible to predict future accesses. The
solution given in [96] is to preserve the locality of fingerprints from the same
file. To do this, there must exist a mapping from fingerprints to a collection of
fingerprints with high locality (e.g. other fingerprints from the same file).

3.5.7 Discussion

We discuss the choices we have made with Hindsight in the light of dedupli-
cation.

Online vs. offline: We expect back-ups to be stored remotely, thus needing
to be transferred over the Internet. Therefore it is reasonable to assume that
the network is the weakest link in the data path.

The main reason for supporting offline deduplication would be to take
some load off the client, but it would also require a somewhat intelligent
back-end. This reduces flexibility and security.

For these reasons we think that online deduplication is the better choice.

Local vs. global: Several systems such as bup [72] and LBFS [68] show that
global de-duplicity is computationally feasible for large systems running on
regular workstations.

Furthermore, depending on which garbage collection technique is chosen
(see section 3.6 on the next page), local access to a global hash index may be
needed anyway.

Combining those reasons with the higher effectiveness of global dedupli-
cation, we believe that global deduplication is the better choice when possible.

While universal deduplication has obvious use cases we are hesitant to
choose this method because of the requirement to lessen security (see sec-
tion 3.8 on page 47). Providing universal deduplication as an opt-in is a
subject of further work (see chapter 6 on page 87).

Chunking: While deduplication on file-level is reasonably effective [65] it
leads to quite bad worst case scenarios. For example, the system will be
near-useless for backing up large databases or virtual machines which are
stored in massive files. Therefore we use chunking of files.

The choice is therefore between fixed and content-aware chunking. While
content-aware chunking can do no worse than fixed chunking, it is also
somewhat computationally expensive. We could not judge which would be
the better trade-off and so our prototype implements both.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 33

Perhaps somewhat surprising, fixed chunking performs almost as good
as content-aware chunking in our use cases. See appendix A on page 97 for
details.

Hashing: If only hashing is used for checking equality of objects there is a
risk of collisions. While Henson [52] and Freeman [46] point out this issue, the
risk is generally considered negligible if a cryptographic hashing algorithm is
used [13, 43, 84]. See section 3.8 on page 47 for details. Furthermore, it would
be impractical to check whether a collision was in fact due to a fault in the
hash function. This would require retrieval of the chunk responsible for the
collision for comparison. If this was the practice, one may as well store the
entire data as is and perform offline deduplication.

Performance tweaks: Our prototype does not implement summary vectors,
but we discuss the possibility in section 6.5 on page 90.

We have not implemented locality preserved caching in our prototype, but
it does preserve locality of chunks when packing them. For that reason we
don’t think it will be too hard to add in later.

3.6 Deletion

We want Hindsight to be able to delete snapshots when they are no longer
needed. However, deduplication complicates deletion. This is because of
shared chunks between different files. When a file is deleted it must be
determined whether or not other files reference the same chunks. Only the
chunks that are no longer referenced by anyone – across all snapshots – can
be deleted.

When a chunk is referenced by no snapshots we call it “dead”. We give
a general discussion of techniques for finding dead chunks, that is: garbage
collection. Then we proceed to a discussion of garbage collection specifically
in Hindsight.

3.6.1 Garbage collection

Garbage collection is the act of finding objects which are no longer needed
(referenced), and reclaim them in order to reuse resources. The usual setting
is programming languages where the objects are data structures, the ones
referencing them are variables and other data structures, and the resources
are memory.

This is relevant to backup systems that split files into smaller chunks and
de-duplicate them. Here, files are represented by the chunks they use, and a
garbage collector is needed to remove the chunks that no one uses.

There are backup systems where this is not the case. If a clever back-end is
assumed, deduplication can be performed there, as we will discuss in section
section 6.7 on page 93. However, in this discussion we will assume a thin
back-end as discussed earlier.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 34

In Hindsight the objects are data chunks and their hashes which are
referenced by snapshots, and the resources come in terms of space on the
back-end. In this section we discuss garbage collection in general and finally
we give a short discussion of how it relates to Hindsight.

For brevity we use GC as short for garbage collector and garbage collection.

GC techniques can be classified by the amount of additional information
stored about references. At one extreme of the scale are tracing methods [94],
where garbage is collected periodically by tracing references and discovering
live objects. No information needs to be stored with the objects themselves
(except a livelihood-flag during GC).

Further up the scale is reference counting [8] and at the far right reference
listing [61]. With reference counting, the number of references to each object
is stored and on the far right of our scale, we have reference listing which for
each object, keeps the full set of references to it.

Trac
ing

Ref.
cou

ntin
g

Ref.
list

ing

Less More

Figure 3.7: GCs classified by the amount of information they store.

The amount of extra data is quite important in our setting because the
number of objects in a backup system can be huge.

GCs can be conservative [26] or exact. Conservative GCs are in contrast to
exact GCs because they cannot reclaim garbage with full certainty, meaning
that objects which have become garbage might not be reclaimed.

Finally GCs can be compacting or non-compacting [94]. Compacting GCs
will try to rearrange live objects in order to minimise fragmentation. This can
lead to higher utilisation of resources. Compacting GCs are usually tracing
based because the compacting routine must either halt the system or run
concurrently with it. But other GCs can be combined with a compacting
routine as well.

Trace based methods

An example of a trace based method is the classic mark-sweep algorithm. It
works in four steps:

1. Pause the system.

2. Trace all references and mark objects as they are encountered. This is
called the mark phase. Objects are only marked during GC.

3. Iterate through all objects and reclaim dead ones. This is the sweep
phase.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 35

4. The system is restarted.

Variations of the algorithm include mark-compact and copying GC [94]. In
the former, objects are rearranged to decrease fragmentation while in the latter
objects are copied to a new location (known as an arena). With copying GC the
sweep-phase is not needed because every object in the old arena has become
garbage and therefore the whole arena can be reclaimed. A refinement to this
scheme is generational GC where objects are grouped depending on their age.
Younger groups are then garbage collected more often, as they tend to die
faster than older objects [12].

Pros: Trace based algorithms are generally space-efficient because no extra
information needs to be stored with the objects (except a live-flag during GC).
Another advantage is that they are able to reclaim circular structures.

These algorithms are also fault tolerant because a trace can be aborted and
restarted if anything goes wrong.

Cons: In a trace based algorithm every object is visited, and live objects are
visited twice. Additionally, generated garbage is not collected until the next
time the algorithm is run.

The ordinary mark-sweep algorithm needs to stop the system during
garbage collection. While improvements are possible, every trace based
algorithm must have a synchronisation point, and therefore will not scale well
[30, chapter “Harder stuff”].

There have been numerous attempts at improving the mark-sweep algo-
rithm to run concurrently with the rest of the system [37, 53]. But they usually
bring a large overhead in terms of extra work the system has to do to work
with the GC [21].

Reference counting

With reference counting the number of references to an object is stored with it.
When a reference is deleted, a signal is sent to the object and the counter is
decremented. When the counter reaches zero the object can be reclaimed.

Pros: Since objects get a signal when references are deleted, they can be
reclaimed the moment they become garbage. A big advantage is that it is not
necessary to stop the system to run the GC.

Cons: Objects participating in a circular structure will all have a positive
reference count, and thus they cannot be reclaimed. The problem can be
mitigated by using a cycle collector. Collectors which can run concurrently
with the system exist [71], but bring an overhead none the less. Another
solution is to use a hybrid GC which uses tracing for structures which can
contain pointers and reference counting for objects which cannot (e.g. strings)
[8].

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 36

Naïve reference counting does not work in a distributed setting where
order of delivery is not guaranteed. Furthermore, each duplication or dele-
tion sends an increment or decrement message, which can result in a large
overhead. A solution to both problems is weighted references [21].

Finally, reference counting is not fault tolerant. If something goes wrong
while sending a message, the message cannot simply be resent because incre-
menting or decrementing the counter is not an idempotent operation.

Reference listing

This technique adds fault tolerance to reference counting. Instead of saving
the number of references to objects, the actual set of references is saved.

This technique shares most of its properties with reference counting.

Pros: The algorithm is fault tolerant because adding or removing an element
to or from a set is an idempotent operation. Thus, like with tracing methods,
garbage collection can just be restarted in the event of a fault.

Cons: A set of references naturally takes up a lot more space than a single
number. This leads to a larger space overhead than reference counting.

Conservative methods

Conservative GCs reclaim garbage with some probability less than one. This
allows them to have a smaller overhead or work in unusual environments.
One example of the latter is the Boehm-Demers-Weiser GC [25, 26], which is a
mark-sweep based GC for C and C++.

Later in this section we give an example of the former. Our method uses
Bloom filters to approximate the livelihood of objects. We are not aware of
any implementations using this method, but Rhea et al. [82] mention it briefly.

Pros: In the case of malloc/free replacements for C/C++ and the likes, a
conservative GC is the only choice, due to pointer arithmetic.

With our method, only the Bloom filters are needed for GC, not the actual
references. This allows us to store the references remotely while performing
GC locally, yielding a more transfer efficient method than the classic mark-
sweep (which has to retrieve all the references before the mark phase).

Cons: Objects cannot be reclaimed with certainty. This problem can be
solved by coupling the method with an exact GC which runs less frequently.
In that case, there is an increase in complexity from having two GCs. Addi-
tionally, some overhead is added to the remote storage, since it must store a
Bloom filter for each snapshot.

Discussion

The concerns of GC in Hindsight is a little different from usual GCs:

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 37

Cyclic structures: There are no cyclic structures in Hindsight. Snapshots
reference data chunks through a hash index, but this is just an indirection. A
data chunk cannot reference other data chunks. Even if Merkle trees are used
for this indirection (see section 6.3.1 on page 88) there can still be no cyclic
structures.

Therefore the biggest disadvantage of reference counting and reference
listing is a non-issue in this context.

Sweeping and compacting: If data chunks are stored separately on the back-
end then no compacting is necessary, because they can be deleted individually.
Thus fragmentation cannot occur.

However in order to better utilise the network connection, data chunks can
be collected into blobs which are then what is stored on the back-end. When
a chunk dies, its blob cannot be deleted from the back-end unless all the other
chunks in it are also dead. So in this case sweeping cannot reclaim all the
storage used by dead blobs.

Over time half filled (or half empty) blobs can crop up. To reclaim storage,
these blobs can be retrieved and repackaged into a smaller amount of filled
blobs. After repackaging the new blobs must be stored, and the old ones
deleted. So compacting can reclaim all excess storage, but is an expensive
operation.

One advantage of reference counting and reference listing is that no explicit
marking and sweeping is needed; objects can be reclaimed the moment they
become garbage. But if chunks are collected into blobs then sweeping is
expensive;

It needs to be determined whether the blob to which a garbage-chunk
belongs is dead. To do that one needs to find out which all chunks in the blob
are dead. There are two options:

1. Maintain a reverse index mapping blobs to the chunks in them. Then
look up the blob in question and check whether it contains live chunks.

2. Go through all live chunks and see if any lives in the blob in question.

Both options add an overhead in performance and complexity. For this
reason it is better to just mark the dead chunks when they become garbage
and postpone sweeping or compacting until more garbage can be cleaned.

3.6.2 Garbage-collection in Hindsight

In the following discussion, we consider this scenario6:

Alice has 101 snapshots with a million files in each. From one
snapshot to the next, 1% of the files (10.000) has changed and
introduces new data. All the files are small; each consists of 1 data

6Inspired by the use case we presented in section 1.1 on page 7.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 38

chunk and thus reference just 1 hash (meta-data is stored directly
in the key index).

The hash index thus contains 2.010.000 entries, while each key
index contains 1.000.000 entries. For illustration, we will assume
50 bytes per hash index entry (hash and blob id) and 100 bytes per
key index entry (file path, meta-data and hash after compression7).
Thus the hash index is 100,5 MB, while each key index is 100 MB.

Alice now deletes the oldest snapshot.

3.6.3 Copying GC and mark-sweep

The conceptually simplest form of garbage collection is a copying GC. In
its simplest implementation, we rebuild the repository on a new back-end
with the live data only. This approach retrieves all external data, with the
purpose of deleting some and storing back the other. In the given example,
this requires retrieval and storage of 1.000.000 + 100.000 chunks of data.

This figure can be improved a lot with mark-sweep by only retrieving
what is necessary in each phase: During the marking phase all references
must be visited. References are stored in the key indices, so these need to be
retrieved from the back-end. But the data itself is not needed. The amount of
data that must be retrieved is decreased further by deduplication across log
data (only the differences between snapshots are retrieved).

But even with deduplication the least amount of data to be retrieved is still
100 · 10.000 key index entries of 100 bytes each yielding 100 MB8.

In the worst case there is no gain from deduplication, and thus all 100
snapshots (excluding the 101th which might be the head) each containing
1.000.000 entries, totalling 10.000 MB, must be retrieved.

The amount of data transfer can be lowered, by introducing an indirection
between the entries in the key index and the chunks they use. This could
allow us to retrieve the references of a snapshot without retrieving the rest
of the key index (file paths and meta-data). This new index could be just 32

bytes per entry (an ID for the indirection and the chunk reference). In the
example, this gives us a best case of 32 MB and a worst case of 3.200 MB.

But the amount of data transferred is still O(chunks in live snapshots).

Pros: When deleting many snapshots and leaving few alive, the log data of
those few alive only needs to be retrieved. There is no dependency on extra
information in the log data in order to know which chunks are alive.

Cons: When deleting few snapshots and leaving many alive, the log data
from the many live snapshots needs to be retrieved. Deduplication is required
on the log data level for the method to be efficient. The same log data may be
retrieved multiple times across different deletion rounds.

7
32 byte file path, 144 byte stat meta-data and hash – 50% compression ratio.

8The changes between snapshots account for 10.000 entries each. The reader might find it
odd that we don’t account for the “first” 1.000.000 entries, but these might be present in the head.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 39

3.6.4 Reference counting

With a reference counting GC each chunk has a number tracking how many
snapshots reference it.

When a file is stored, every new chunk it introduces starts with a reference
count of one. Existing chunks have their reference count incremented and
when deleting a snapshot, its chunks have their reference counters decre-
mented. When the reference count of a chunk reaches zero, the chunk can be
reclaimed or marked for reclaiming (sweeping or compacting).

The advantage is that all GC analyses can be performed solely using the
global hash index, annotated with reference counts; Each hash would keep
the reference count next to the chunk’s blob-location.

As a disadvantage, when deleting a snapshot, we would have to retrieve
its log data to decrement the counters of the chunks it references. This is
comparable to the copying GC, except that here we retrieve the log data of all
dead snapshots. Thus, the best-case and worst-case scenarios from section 3.6.3
on the preceding page are equally valid for reference counting, except that
now the worst case is when only a few snapshots survive.

Extra care must be taken for this technique to be crash safe. The problem
arises due to a race condition when incrementing the counters. Consider the
following scenario:

A file referencing an existing chunk is being snapshotted. Either
the file is recorded in the snapshot before incrementing the refer-
ence counter, or the reference counter is incremented before the
file is recorded. In both cases, a system crash may leave the log
data inconsistent.

In the first case, the reference counter is one too low, while in the
latter it is one too high.

The underlying problem is that updating the reference counter is not an
idempotent operation, meaning that the results gained from performing the
operation one time or many differ. Thus recording a file and updating the
relevant counters must be performed atomically.

Though possible (e.g. with transactional databases) it requires the hash
index and the key index to be tightly coupled – either by storing these in the
same database, or at least in two structures that allow transactions to span
them both. This gives a less flexibility in the design.

Additionally, reference counting is fragile: It requires a lot of extra book-
keeping logic to be executed safely [30].

Pros: When deleting a few snapshots, leaving few dead, only the log data
of the dead ones needs to be retrieved. The same log data is never retrieved
multiple times (the snapshot and its log data is deleted after retrieval). The
liveliness analysis is fast, since only the chunks from snapshots that have been
deleted need visiting.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 40

Cons: When deleting many snapshots, leaving many dead, the log data of
all the dead ones needs to be retrieved. The implementation depends on extra
GC log data in the form of counters. Updating the counters is not simple to
get right without transactions. Deduplication is required at the log level to be
efficient.

3.6.5 Reference lists

Reference “counting” can be made idempotent by keeping a full list of refer-
ences9 instead of merely a reference count. For each chunk, its reference list
keeps track of all snapshots referencing that chunk.

When a new snapshot references a chunk, the snapshot is added to the
chunk’s reference list. Conversely, it is removed from the list when the
snapshot no longer references the chunk (e.g. the snapshot was deleted). A
chunk is dead when its reference list is empty.

During a snapshot, the reference lists of the snapshot’s chunks are updated.
Because removing a snapshot from a reference list is an idempotent opera-

tion, a deleted snapshot can simply be removed from every reference list; No
log data needs to be retrieved. And if this process crashes, it can merely be
restarted (the reference lists for which the snapshot was removed in the first
run will stay unchanged during the second).

As opposed to the tracing GCs and the reference counting GC, this method
allows liveliness analysis based solely on local data. This makes the GC
routine more efficient, but introduces an overhead in storing the reference
lists.

On the downside, a reference list is a more complex structure than a simple
counter. But the requirement of atomicity is avoided, due to the idempotent
insert and remove operations. Our tests suggest that reference lists can be
represented efficiently when encoded as bit-vectors and compressed in bulk.
See section A.4 on page 102.

Pros: It is possible to find dead chunks with local data only. The actual
deletion is quick, since the snapshot can be removed from reference sets
locally (its log data is not needed).

Cons: Deletion requires traversal of the local index, to remove the snapshot
from the reference lists of all its chunks. A reference list needs to be stored
for each chunk.

3.6.6 Conservative garbage collection

It is possible to perform a conservative garbage collection (see section 3.6.1
on page 33), where not all references to dead chunks are known precisely.
Thus, not all garbage is necessarily removed, but it is guaranteed that what is
removed is garbage.

9Technically a set, but the word “list” is used in the literature [30, 61].

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 41

This can be achieved by adding a Bloom filter [67] to each snapshot,
containing its chunk hashes. Rhea et al. [82] lightly touches the possibility of
using a Bloom filter to enable conservative garbage collection, but we are not
aware of any real analysis of this idea.

A Bloom filter is somewhat like the opposite of a cache, in that it performs
approximate membership testing. But unlike the cache its certain answer
is the positive one. When testing whether (or not) a chunk is needed by a
snapshot that does reference it, the Bloom filter will always answer positively.
However, if the chunk is not in the snapshot (and therefore not in the filter),
the Bloom filter may answer negative, or with probability ε falsely positive.

A Bloom filter consists of an m sized bit-vector, and k hash functions which
each map a value to a bit position in the vector (v→ [0;m − 1] ∈N). The
empty set is a bit-vector of sole zeros. When a value is added to the filter,
its k hashes are computed (one for each hash function) and the resulting bit
positions are set to 1. To check whether a value may have been added, its
hashes are computed, and its bit positions checked: if one of them is 0, the
result is a definite no. On the other hand, if all of them are set to 1, the result is
an uncertain maybe. Elements cannot be removed from the filter once inserted.
The trick is to choose a configuration given a false positive rate 0 < ε < 1 and
the number of elements the filter must contain, in terms of the bit-size m and
the number of hash functions k.

This can be used to implement a conservative GC. When creating a new
snapshot, a new Bloom filter containing all the snapshot’s chunk-hashes
is created. To test whether a chunk is in use, it is checked against all the
snapshot Bloom filters, and if one claims to use it, it may be alive and must be
considered to be so. If no filter claims to use it, it is definitely dead and can
be deleted. Whenever a snapshot is deleted, its Bloom filter of chunk-hashes
is deleted too, thus removing its chunk references (positives as well as false
positives).

If the same configuration of hash functions is used for all Bloom filters,
they can be merged together to form a single Bloom filter describing all the
snapshot’s references, by simply or’ing the bit-vectors. This turns checking
a hash’s liveliness into a constant-time operation. However, it gives a higher
false positive rate, since the new combined filter contains the elements from all
the merged filters, and thus we cannot advise this as anything but a heuristic
to avoid checking all filters individually for every hash. Our prototype does
not employ this heuristic, and we do not discuss it further.

The false positive rate ε of a Bloom filter is approximated as [67]

ε ≈ (1− e−kn/m)k

where m is the size of the Bloom filter in bits, n is number of elements
inserted and k is the number of hash functions used. However, since every
Bloom filter from all snapshots has to reject a hash, before it can be deleted,
the false positive rate of the GC is 1− (1− ε)s, where s is the number of
snapshots.

From this, we can calculate that a Bloom filter using 10 bits per element
and 7 hash functions has a false positive rate of ε ≈ 0.082. This would result

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 42

GC time GC transfer Extra log data
MS-GC O(a + d) O(a) O(1)
RC-GC O(d) O(d) O(a + d)
RS-GC O(a + d) O(1) O(a + d)
C-GC O(a + d) O(s) O(s)

Table 3.1: Garbage collection methods.

MS-GC is the mark-sweep GC, RC-GC is the reference counting
GC, RL-GC is the reference listing GC and C-GC is the conservative
GC. Here, d is the number of chunks that are used by snapshots
marked for deletion, while a are all other chunks. And s is the
number of live snapshots. Note that the running time of RS-GC
requires constant-size reference lists with constant-time operations.

in a conservative GC that would remove 92.1% garbage from 10 snapshots or
43.9% from 100 snapshots (assuming no data overlap between snapshots).

Mitzenmacher [67] further investigates compressed Bloom filters, and
show that these may yield an even lower false positive rate per stored byte.

Pros: Uses a small amount of extra log data, and likewise uses a small
amount of data transfer during the GC routine.

Cons: Is likely to leave some percentage of garbage behind. Requires a
liveliness check on every known hash (dead or alive).

3.6.7 Discussion

Table 3.1 lists each GC method along with its expected performance. The
mark-sweep GC requires the least extra log data, the reference counting GC
has the cheapest liveliness analysis, the reference listing GC transfers the
smallest amount of data and the performance of the conservative GC depends
on the number of live snapshots.

We consider data transfer to be the largest penalty, and find reference lists
the most appealing GC method on large repositories. We expect a compact
representation to yield a small overhead and make the reference listing GC’s
extra log data an acceptable trade-off. As mentioned in section 3.5 on page 28,
global and online deduplication already needs an index of hashes, so much of
the log data is present already. The actual reference lists are the only added
overhead.

Another interesting method could be a combination of mark-sweep and
conservative GC. Frequently, the repository is cleaned with the conservative
GC, which is cheap, but cannot remove all the garbage. Periodically, mark-
sweep is invoked to clean whatever the conservative GC left behind. This
method is especially efficient on small repositories, where the Bloom filters
needed by the conservative GC are small. For a million chunks, filters of just

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 43

1 MB per snapshot could clean out 98% of the garbage. However, when using
the same filters with 10 million chunks, the effectiveness drops to 30%.

In the prototype, we have implemented a conservative GC, partly because
this required the fewest changes in the implementation, and partly due to our
failure in finding any other project that has evaluated the performance of a
conservative GC.

In section 4.6 on page 70, we present the details of our conservative GC
and in chapter 5 on page 77 we test and discuss its performance.

3.6.8 Garbage collection of log data

Since Hindsight reuses its own backup system for saving the log data, it can
also reuse the garbage collection method to reclaim log data storage. Thus the
prototype naturally uses its conservative GC to reclaim log data.

3.7 Crash Recovery

We want the system to be able to recover from a system crash. If a snapshot is
interrupted, it should be possible to recover the local log data to a consistent
state. The alternative is to discard the partial snapshot, recover the latest
version saved on the back-end and start over.

When considering how to make the system crash safe it should be taken
into account in which environment it is running. If it runs on a server in a
basement that virtually never fails it may be acceptable if it takes a very long
time to recover from a crash. On the other hand, if the system crashes often it
might not. We expect Hindsight to run in a variety of environments and it is
simply not acceptable to be faced with a long recovery process because the
laptop’s battery has run out.

We have designed Hindsight with an “expectation of crash”. This is
inspired by Candea and Fox [29] who discuss crash-only design, where a
piece of software is designed to crash as the correct and only way of stopping
it. In Hindsight, crashing is not the preferred way of stopping, but the penalty
from doing so should be small.

We distinguish between two kinds of crashes; program crashes and disk
crashes. In a program crash, the program is terminated and any data residing
in memory is lost, but data already written to disk is safe. In a disk crash all
local data is lost and only the back-end remains. Because of checksumming
we can detect bit rot in local files, and we treat such data corruption as a disk
crash.

3.7.1 Program crash; no data loss

A naïve approach to handle program crashes is to copy the affected log data
before taking a snapshot. If the snapshot failed for some reason, the log data
can simply be rolled back. This approach, however, involves several problems:

• The blobs that were transferred to the back-end during the failed snap-
shot are not referenced by the saved log data. When the log data is

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 44

rolled back, the blobs are no longer used but they still take up space.

This could be improved by only copying the key index and treating the
hash index specially. That way, the chunks uploaded during the partial
snapshot could be referenced, and need not be rolled back.

• The log data may be large (extrapolating from the results given in
appendix A on page 97 suggests several gigabytes for a large system)
and so taking a full copy can be expensive. This copy must be taken
every time the log data is modified.

• After the log data has been rolled back, the failed snapshot must be
restarted from the very beginning. Of course the log data can be copied
at several points during a snapshot, but this adds even more overhead.

In Hindsight, we handle crashes a bit differently. The hash index keeps
track of blobs that are in-transfer, while the key index keeps track of keys
whose chunks may not have been stored.

So the first point is easily addressed; for each blob that is transferred its ID
is written to a log file. After a crash all transferred – but unreferenced – blobs
can be removed from the back-end, preventing dead blobs from cropping up.

The second and third points are addressed by not copying the log data at
all and instead starting directly with the key index left by the prior snapshot.
This makes it crucial, that the system is always able to bring the indices back
to consistency. What it boils down to is that the hash index must not reference
a non-existing blob and the key index must never reference a non-existing
chunk.

The recording of chunks cannot be delayed until the blob in which they are
contained has been transferred to the back-end, because the system should be
able to transfer several files in parallel. It is the whole point of deduplication
that a chunk is only saved once, so one part of the system must immediately
be aware of the chunks saved by another.

Appending to a log each time a chunk is inserted is not feasible because

• There are too many chunks. Every file gives rise to at least one chunk.

• An expensive disk sync must be performed after each chunk is appended
to the log, making the approach even more prohibitive.

We solve this problem by having an in-memory chunk cache, and writing
chunks (to the index, and to the log) in bulk; see section 4.4 on page 66 for
details.

Logs of the inserted files must also be kept. After a crash we have the
choice of a) reinsert each file; or b) for each inserted file check if its chunks
have been inserted in the hash index, and only remove the file path if there
are chunks missing.

Depending on the garbage collection strategy (see section 3.6 on page 33),
it may be necessary to adjust the hash index before a file path can be removed
from the key index.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 45

This makes option b) the better choice because it sometimes saves files,
and has roughly the same overhead as option a)10.

When files are very small it can be quite limiting to write and sync the log
files. Since all the files that are to be backed up are known in advance (they
are right there on the disk), an obvious solution is to bulk-write several file
paths to the log at a time. This is the solution we use in our prototype.

In section A.2 on page 98 we present benchmarks of our prototype while
varying the amount of file paths written to the log at a time.

3.7.2 Disk crash; data is lost

If the log data is lost it must be possible to restore it from the back-end. So it
must have been saved there at an earlier stage. To exploit redundancy in the
log data we use Hindsight itself to save its own log data. The resulting meta
log-data is saved directly.

The log data must be saved periodically. A problem arises if the disk
crashes when blobs have been transferred since the log data was last saved;
when the state is restored it no longer references those blobs, which are now
dead.

There are three ways to fix this: a) the snapshot’s log data must be stored
incrementally on the back-end, so that there will never be an “old” version;
b) it must be possible to remove the dead blobs from the back-end, even
though they are not referenced; or c) the log of in-transit blobs must be kept
remotely to survive the crash.

The first option will decrease performance because no blob can be trans-
ferred before the hash index referencing it has been saved. In the extreme
case all the blobs are queued before being transferred, and in the others the
hash index will be transferred several times. In either case the time it takes to
complete a snapshot will increase.

To be able to remove dead blobs from the back-end there must exist a
way to discover which blobs are stored there. The solution is to extend the
back-end API with an operation, LIST, which returns a list of stored blobs. As
an example Cumulus [93] requires a LIST operation of its back-end.

3.7.3 Back-end failure

Even though we assume a reliable back-end, that does not loose data, we
have still thought about what would happen if it did. It would improve
transparency and confidence in the system, if a separate tool could restore
data from the back-end, even when it is partly corrupted.

In this section, we discuss the consequences of losing a single blob. Natu-
rally, the type of data stored within the blob is essential to the amount and
nature of the information lost. When discussing indices we will assume the

10The reinsertion of files in option a) leads to as many index lookups as checking in option b),
if no chunks are missing.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 46

lost blob contained the root of the index and hence that all of the index has
been lost.

Data blob: We lost some of the data, and all we can do is to skip the chunks
stored in this blob when extracting. This will leave holes in the extracted
files that reference the missing blob, but it does not affect other files than
these.

Hash index: If the hash index is broken, we can rebuild it by inspecting
all data blobs and recomputing the chunk hashes. This is possible,
because the length of each chunk is stored in the data blob, and not in
its reference in the hash index.

If a reference counting or reference listing garbage collector is used, we
would have to recompute the reference counts or lists, by scanning each
key index and update the hashes it uses.

Key index: If the key index is lost, we have lost the directory listing for the
corresponding snapshot. But even though we have deduplication on log
data across snapshots, we can still recover the missing files in their other
versions.

If a file and its “neighbours” in the key index have never changed they
are lost forever, because that part of the key index will not have changed,
and thus there is no newer or older version of it.

But if a file has never changed, chances are that it is still available on
disk.

Tarballs: If a tarball describing log structure is lost, then either a hash index
or a key index is lost. In each case, the situation resembles that of losing
one of these indices, and in both cases the required logic is the same as
just discussed, but at the secondary level.

Snapshot index: The snapshot index can be seen as the “root” of the system:
the main entry point. If we loose it, we loose the descriptions of all
snapshots. However, this data is stored redundantly in the tarballs
themselves, in a file named info. Thus, we can rebuild the snapshot
index by finding the tarballs.

This discussion can be extended somewhat to loss of multiple files. If we
lose many data blobs, we can skip more data when checking out. With the
indices, we assumed that all of the index was lost. And if multiple indices are
lost, we can repeat the actions taken, as long as one valid version exists.

Even if the meta-data turns out completely broken, we can still restore the
data blobs, for user inspection. We cannot say much about how the chunks fit
together, except that the original version of the file was stored continuously.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 47

3.7.4 Discussion

Our prototype is (almost11) fully resistant to program crashes. To strengthen
our argument we have devised a test in which the system is crashed very
often. See section 5.2.1 on page 83 for details.

The prototype can live through a disk crash but it cannot reclaim unref-
erenced dead blobs. We find that the unlikelihood of leaving unreferenced
blobs does not warrant introducing a fourth operation to the back-end API.
However it can easily be introduced if one wishes.

We have not done anything to recover from blobs lost by the back-end.
However, we think that the prospects of a tool that can do that puts our design
in a positive light.

3.8 Security

In this section we discuss security issues, and what Hindsight does to address
them.

3.8.1 Chunk hashing

Internally, Hindsight uses cryptographic hashes [43] to identify equal chunks
of data (i.e fingerprinting). A cryptographic hash function takes an input
of arbitrary length and produces a fixed-sized number from it (usually just
referred to as a hash12). Since the resulting output is fixed-sized, there is a
risk of producing equal hashes from two data chunks that are not the same.

If this happens, Hindsight would discard the latest chunks, and thus loose
data. On the other hand, comparing full chunks is impractical both with
respect to time and local space usage (we do not want to store the full data
chunks locally).

The size of the hashes needs to be chosen, and it seems consensus says 256
bit hashes are secure and that the risk of collisions with these are negligible
[13][43][84], so this is what the prototype uses. On average the first collision
occurs with roughly 2n/2 hashes, where n is the bit-size of the hashes, so in
our setting the first collision would occur after roughly 2128 hashes [43]. For
comparison, the popular revision control system Git uses 160-bit hashes to
identify content [4].

Further note, that we mainly need protection from accidental collisions; In
order to abuse a collision, one would have to first create a malicious file with a
hash that matches some different data on a user’s system, send the malicious
file to the user, and then have Hindsight register this malicious file before the
user’s own data. Creating a chunk of data with a hash that matches some
other specific chunk requires 2n−1 hash computations on average.

This attack could be avoided by using a Hash-based Message Authentica-
tion Code (HMAC) instead of a regular hash. HMAC is like a hash function
that besides the input data takes a secret key. Each key will produce a different

11See section 6.1 on page 87.
12But beware: a hash function is not necessarily a cryptographic hash function.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 48

output. With this construction 2n hash computations are needed to produce a
collision [43], and thus it may be safe to use a smaller hash size.

To recap, the prototype uses regular 256-bit hashes to identify content. For
information on the choice of algorithms, see section 4.7 on page 73.

3.8.2 Threat model

We want Hindsight to safely store data on an untrusted, yet reliable, back-end.
This must occur with a minimum of information leakage. In this section, we
present a threat model and discuss how the threats relate to Hindsight, and
what we do to limit them.

We use a life-cycle threat model based on the one presented in Hasan
et al. [51], where threat models for storage systems are investigated. Here,
the life-cycle of a piece of data is divided into 7 parts: a) creation at the client
and transmission; b) reception at the back-end; c) output preparation at the
back-end; d) retrieval; e) backup and redundancy at the back-end; and f) data
deletion. Throughout the life-cycle, four properties must be protected:

Confidentiality: Others cannot read the data.

Integrity: Others cannot modify the data.

Availability: The data stays available for its rightful owner to retrieve (this
category includes avoidance of denial-of-service attacks).

Authentication: By requiring authentication from those accessing the data
and verifying their permissions, confidentiality and integrity can be
maintained to some extent.

Here, “others” refer to other users of the back-end, hackers and insiders.
We assume a reliable back-end, which means the back-end is responsible

for points b, c and e of the life-cycle. This implies protection from other users
of the back-end and hackers, regarding data integrity, authentication and
overall availability. In short, the back-end must maintain the data stored and
be able to bring it back for later retrieval. Only Hindsight shall be able to put
and delete data.

Since we think of the back-end as untrusted, we do not want to share our
data with it. In fact, we assume a malicious insider who wants to read and
modify the data silently. Naturally, we cannot protect the data from an insider
who wants to corrupt or delete it. The parts of the life-cycle that Hindsight is
responsible for is then a, d and f :

Confidentiality: To prevent others, including insiders, from reading the data
Hindsight stores, we apply client-side encryption of all blobs. Addition-
ally, the blobs are given non-sense names in the form of unique random
IDs (except the snapshot index).

The data is encrypted locally before transmission and likewise decrypted
locally after retrieval. Thus, the back-end never sees the unprotected
data, and confidentiality is ensured throughout transmission, retrieval

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 49

and deletion. At creation, the data resides in memory at the client, which
we assume is safe.

Since the back-end never sees the unprotected data, neither will a back-
end insider or hacker.

Integrity: We prevent data tampering from going unnoticed by protecting all
blobs with a cryptographic MAC. As with encryption, this process is
done locally, before any transmission. When decrypting a blob the MAC
is first verified; if it fails the blob is rejected and considered dead.

Since the back-end never sees the data without a MAC it cannot modify
it without being noticed when the data is retrieved. Thus, we prevent
silent modification by a back-end insider or hacker.

Both encryption and authentication requires a key. Our prototype gener-
ates a random 256-bit key once. This key is then used for the whole repository.
For encryption, a 192-bit random nonce is used to ensure, that a blob will
always result in a unique ciphertext. For more details, see section 4.7 on
page 73.

3.8.3 Information leakage in Hindsight

The design of Hindsight is leaking information:

New blobs: By monitoring new blobs, the back-end may monitor the amount
of new information added to the system. This may leak information
about when system updates are run or when working hours occur. This
leak is inevitable, since we only want to transfer the new information to
the back-end. This is a minor issue and expected when using a backup
system.

Total data size: The total byte count of all blobs leaks a minimum for the
amount of data stored (after compression). This is a minor issue and
expected when using a backup system.

Blob sizes: Compression and content-aware chunking yield blobs whose sizes
depend on the data they contain. By knowing the size of the blob, we
know something about the data. This can be used for fingerprinting and
proving the presence of some specific data. A back-end maintainer may
be able to find evidence for the existence of a Wiki Leaks tarball solely
by looking for blobs of specific sizes.

While the first two leaks are minor issues that one would expect from a
backup system, the last one is worse. It allows an outsider to gain insight in
the stored data. This can be lessened by removing compression and content-
aware chunking. But the last chunk of a file could still leak information. A
complete solution is to add padding to blobs and only store blobs of a fixed
size.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 50

3.8.4 Convergent Encryption

A drawback from this simple, yet safe, security model is that it breaks the
possibility of deduplication across systems (universal deduplication), instead
of merely deduplication across files within one system (global deduplication).

This is because the file chunks from one user are encrypted differently
than the file chunks from another. As a result, the same chunk will look
different to the back-end each time it is stored.

A simple way to solve this, is to always use the same key on the same
chunk. This is achieved by encrypting the chunk with a key derived from the
chunk itself (typically its hash). This process is often referred to as convergent
encryption[40].

When the same chunk always yields the same encrypted ciphertext, it
is possible to implement a deduplication routine on the back-end and get
deduplication across all systems. This could save a lot of data, since the
systems may share system libraries and applications.

However, this efficiency comes from a compromise in privacy. When the
chunk is encrypted with a key derived from it, the back-end can prove whether
or not a user has a certain chunk of data. This is a serious leak of information,
and the reason why Hindsight does not support it.

It would none the less be an interesting optional feature, allowing the
user to choose some paths to back up with a lower security requirement (e.g.
/usr/lib on a Linux machine). This feature would allow the user to make a
choice between space usage and privacy.

We have aimed for “security by default” and therefore did not go with
convergent encryption. In section 4.7 on page 73, we discuss what one would
need to do to extend our prototype with convergent encryption.

3.8.5 Access Control with Hindsight

Hindsight has no built-in support for access control. With the master key, one
can read everything and generate new authenticated files.

We did however consider what could be done, in order to introduce some
form of access control. A motivation for these scenarios could be:

Read-only: You may want to allow others access to your backups (e.g. your
company), while still being the only one writing new content.

Write-only: If a thief steals your laptop, you do not want that person to access
your backups. Your laptop needs write permissions only.

Revocation: If you ever loose your key, you want to be able to revoke its
permissions.

The first one cannot be done through cryptographic protection. We could
prohibit someone from writing authenticated files, but the person could still
delete or corrupt the data.

In the second case, an asymetric cryptosystem could allow the system to
encrypt the data, without being able to decrypt it. However, if the thief has

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 51

access to the current state of the data, then information has already leaked.
And in any case, this does not prevent the thief from deleting or corrupting
the data.

Therefore, access control is better resolved on the back-end. A key could
be used for authentication, and if that key is ever lost (laptop is stolen) its
permissions could be revoked. If the back-end supports access control, then
Hindsight supports it inherently.

But even then, a thief could still have the master key, which is stored on
the client. Though the access to the back-end has been revoked, this is still a
major breach. To avoid this, an indirection between the key used by the client
and the master key is required:

1. When the repository is initiated, a master key and a client key are
generated. The master key is encrypted with the client key and stored
on the back-end. The client key is stored locally as part of the Hindsight
state.

2. When Hindsight starts an operation, it retrieves the encrypted master
key and decrypts it, but never stores it locally.

3. When a new client is introduced, the master key is retrieved, decrypted
and re-encrypted with the new client key. Hence, clients can create new
clients.

4. To revoke a client, its permissions are revoked and its encrypted copy of
the master key deleted. The client is now left with a useless client key.

This setup only works if the revocation happens before the client is over-
taken and used to retrieve the master key. Ironically, the client protects itself
from the back-end with cryptography, while depending on the back-end to
protect the data from other hostile clients.

3.9 External Storage

In order to accommodate as wide a range of external storage solutions as
possible the back-end API must be simple. We require back-ends to implement
this minimal API:

PUT(k,v): stores the blob v with key k. If a blob with key k already exists, it
should be overwritten. The operation must be atomic: It should either
store the data correctly, or inflict no change. This allow us to ignore the
problem of half-stored blobs and enable us to overwrite our snapshot
index root directly, without worry.

GET(k): retrieves the blob stored with key k.

DEL(k): deletes the blob stored with key k along with the key.

Hindsight overwrites stored blobs in one case only: the snapshot index is
always stored with key snapshots.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 52

This makes it easy to implement new back-end modules for new types of
external storage, may it be an external harddisk or a cloud-based key-value
store. It also simplifies the task of applying a secure encryption layer, since
the server is left with as little knowledge as possible – it does not need to
know the semantics of the data in order to store it, and that is all we require.

We have left out INIT and UNINIT, which means the back-end must
be setup and ready for use when Hindsight is run. The reason for leaving
them out is that they was not strictly needed by our prototype. Adding the
functions will not change the design fundamentally. In short: we judged our
time spent better elsewhere.

Our prototype comes with back-end modules for storage in a local file
system, via SSH, at Amazon S3 or in an Apache CouchDB database. But it is
almost trivial to write a new Hindsight back-end module to support another
key-value store.

On rare occasions, unreferenced blobs can be left on the back-end (see
section 3.7 on page 43). With the suggested API it is not possible to remove
these blobs. A solution can be implemented if the API is extended with a
LIST operation, which returns all keys stored on the back-end. This would
allow Hindsight to compare the list of keys it knows to the actual keys, and
remove unreferenced keys from the back-end.

3.10 Storage format

In this section, we describe what Hindsight stores and where. This includes
file paths, data and meta-data.

3.10.1 Chunks and blobs

When backing up, we take the data present locally and replicate it on the
back-end. Because of deduplication (see section 3.5 on page 28), files are
divided into chunks, and to hide latency and use network bandwidth more
effeciently they are collected into blobs.

An example of a system that does not collect chunks into blobs is the
S3QL file system [79]. As a result, the system may store many small files
on the back-end, giving an excessive amount of back-end operations. If
each operation comes with a long latency (authentication etc.) this may be
inefficient, compared to storing fewer large blobs. Further, S3QL is designed
for the Amazon S3 key-value store where the user is charged per operation.

To avoid this scenario, Hindsight groups the chunks into blobs, until some
predefined size criteria has been met. However, the blobs should not be too
large either: since the back-end API only allows retrieval of whole files, the
blobs should be small to allow a low minimal data retrieval. The default in
Hindsight is 2 MB. Other systems that group chunks into blobs include bup
[72], Cumulus [93] and Venti [77]13.

13A blob is equivalent to a segment in Cumulus, an arena in Venti and a packfile in bup.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 53

When Hindsight groups chunks, it guarantees that the new chunks of a
file (those that are not known beforehand) are stored contiguously; that is,
they are stored in a sequence of blobs where only the first and last blob may
contain data from other files. This preserves locality between chunks, making
it more likely that retrieving a blob to get a chunk of a file gives other chunks
from the file along with it. This is something Venti cannot do [96].

A beneficial effect of grouping chunks into blobs is that this allows for
compression of whole blobs – and thus many chunks – at a time. This gives
the compression algorithm more information about the data and is likely to
yield a better compression ratio; specifically in the case where the chunks are
from the same file. At least Cumulus authors (Vrable et al. [93]) noted this
benefit.

Likewise, encryption and authentication can be performed once per blob,
thus lowering the overhead of securing the data.

Splitting file data into smaller chunks gives better deduplication, whereas
grouping the resulting chunks gives better performance.

3.10.2 File paths and meta-data

Hindsight stores both file paths and meta-data directly in the key index.
File paths needs to be stored here, since this index is used for querying the
directory structure. However, meta-data could be stored in blobs on the
back-end like the file data.

There are two reasons for storing the meta-data up front:

1. The meta-data is likely needed whenever the file data is needed, and it
may even be needed when the file data is not.

When restoring a file, its meta-data is restored as well. However, in our
FUSE front-end, the meta-data is used to construct the file structure,
before the file data is retrieved.

By avoiding the indirection, the meta-data is more accessible and faster
to retrieve.

2. The meta-data is likely better compressed when stored in the index
alongside other meta-data, than when mixed in blobs with file data.
Further, file meta-data can rarely be de-duplicated like file data chunks,
since the time stamps they contain are monotonically increasing; they
do not repeat themselves and so neither does the meta-data as a whole.

On the other hand, storing the meta-data directly in the key index is likely
to make it larger (but not certain; it might be possible to compress the meta-
data to less than the size of its fingerprint). If the size of the key index grows,
querying for keys will be slower because more data needs to be retrieved.

3.11 Summary

In this section, we discuss the limitations and flexibility of the design.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 3. DESIGN 54

Snapshots per repository: If reference lists are used for garbage collection,
the number of snapshots is limited by the lists’ ability to scale. We
discussed this in section 3.6.5 on page 40.

Since our prototype uses a tracing garbage collector it has virtually no
limit on the number of snapshots; The only limiting factor is that the
snapshot index is read into memory, but it is very small, and millions of
snapshots are still possible.

Files per snapshot: There is no limit on the number of files in a snapshot as
long as the disk can store the resulting log data. Hence, the only limit is
whether we can store the file names, meta-data and chunk hashes. This
log data is typically less than 1% of the original data (see appendix A
on page 97).

Bytes per file: We maintain the chunk hashes of each file in a list in memory.
Thus, we cannot snapshot files that result in more hashes than can be
kept in memory. This is limited further by the fact that we need to be
able to keep a leaf from the key index in memory – we may be in trouble
if many very large files are snapshotted together.

We discuss how this problem could be solved with hash trees in chapter 6

on page 87 on further work.

Deletion: The design is not limited to deleting full snapshots only. It is
possible to delete just some keys inside a key index, by copying it with
the wanted keys, and then deleting the original.

Front-end: Due to the decoupling of front-end and backup system, it is
possible to write new front-ends without changes to the core system.

Remarks on resource usage: The design does not rely on any large in-memory
data structures. It uses external b-trees which allows most data to stay
on disk, and any space-time trade off decissions are left to the imple-
mentation.

As a note on time usage, each chunk is stored in O(log hashes) time,
which comes from inserting its hash in the hash index. Further, each key
requires O(log keys) to store it in the key index. As a result, each key
is stored in O(log keys + chunks · log hashes) time, where chunks is the
number of chunks in the key’s contents.

In practice b-trees will never grow very deep because of the large amount
of splits in each node. In other words, the “log”s will be quite small.

We believe it possible to write an efficient backup system that implements
this design.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

Chapter 4

Implementation

4.1 Installing and using the prototype

In this section we briefly explain how the Hindsight prototype can be installed
and used. This program is not stable yet, however it will probably not harm
the host system.

To ensure safety, it is possible to run the prototype with the Ubuntu 11.10

live CD, or in a modern Ubuntu virtual machine.

4.1.1 Installation

To build Hindsight the following is needed: the Glasgow Haskell Compiler in
its newest stable version (http://haskell.org/ghc), the Haskell package tool
cabal-install and the Hindsight source code (http://goo.gl/Vl7ho).

Before Hindsight can be built, a configuration file must be created. An
example is located in Config.hs.example. This file should be copied to
Config.hs and edited as needed.

The most important configuration is the back-end module, and its lo-
cation on the file system. The default is to use the back-end module in
~/.hindsight-modules/local for local storage. If this is used, a link to the
modules directory in src should be placed in ~/.hindsight:

ln -s src/modules ~/.hindsight-modules

We have written a project file for the Cabal package tool, which should
make installation as simple as running cabal install in the src directory.

Prebuilt binary. As an alternative to building Hindsight, we provide a
64-bit prebuilt binary. This executable was built to use the module path
~/.hindsight-modules/current. The current module can be setup as a link
to the actual module. To install the prototype with this configuration, a
setup.sh script has been included. It copies the back-end modules to the
aforementioned location and links the local module to current.

Since we cannot ask the reader to simple download and run an executable
from a strange website, the tarball containing the files has been signed by one

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen 55

http://haskell.org/ghc
http://goo.gl/Vl7ho

CHAPTER 4. IMPLEMENTATION 56

this report’s authors’ public key using GPG. Details on how to download and
verify the prebuilt binary can be found in appendix C on page 122.

4.1.2 Using the prototype

In this section we shortly present how to use the prototype, and how to inspect
snapshots using the FUSE mount tool.

Table 4.1 gives an overview of the available commands. First, the repository
is initialised. Snapshots are added to the system with the snapshot command.
These can be inspected with the various list and checkout commands.

Description Command (hindsight [...])

Documentation and help help
Initialise repository init
Save all log data on back-end seal
Recover log data from back-end1 recover
Garbage collect gc

Take a snapshot2 (named “home”) snapshot home ~
List snapshots list
List contents list homedir~1
List files matched by prefix list homedir~1:code/hs
List directory listdir homedir~1:code/hs-tree
Recursive checkout checkout -r homedir~1
. . . by prefix checkout -r homedir~1:code
. . . and without recursion checkout homedir~1
. . . files and meta-data only checkout --nodata homedir~1
Delete snapshot delete homedir~2

Table 4.1: List of Hindsight commands

Playing with cache: Hindsight caches the blobs it retrieves locally to avoid
retrieving the same blob multiple times. To clear its caches, the user has to
delete the cache folder from the repository directory, as well as all the locally
stored key indices:

> rm -r ~/.hindsight/{cache,pri,sec,snaps}
> hindsight recover

The recover is needed because the command also removes the idx folders
containing the hash index. The recover command recovers the hash index,
making the repository ready for use again.

1Caution: This command should only be used if the local log data is corrupted, as it will be
overwritten.

2More precisely the command takes the name of a family, modifies the head to reflect the
filesystem under the given path, then takes a snapshot of the head.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 57

Mounting a snapshot: To mount a snapshot, the mount tool located in
src/tools/fuse is used. The tool creates a cache folder named dir.cache to
store the actual directory structure.

A snapshot is mounted in an empty directory with the command:

> ./mount.py [snapshot] dir

The dir directory now mirrors the snapshot as it looked when it was taken.
To unmount it, use the fusermount utility and remove the cache directory:

> fusermount -u dir
> rm -r dir.cache

4.2 System design

In this section, we first give an overview of the process model that drives the
Hindsight prototype. Then we describe the prototype’s individual processes.

4.2.1 Process model

The implementation is structured with a process model inspired by Erlang and
the actor model. This means that the system is written as various independent
and isolated parts that run in their own dedicated thread.

The model is inspired by the Haskell packages eprocess by Benavides [14],
remote (also known as Cloud Haskell) by Epstein [41] and Combinatorrent by
Andersen [10].

In our model, a process consists of:

A message API which describes the messages that this process can handle.
When the process is first created, a new input channel that accepts such
messages is created and assigned to it. This channel acts as the mailbox
of the process.

A message handler that takes care of executing the needed action whenever
a new message arrives. Messages can either be sent synchronously (i.e.,
the caller blocks and waits for a reply) or asynchronously.

A flush handler that runs when the system flushes its state (e.g. when the
last file has been inserted). When a process receives a flush message it
should pass it on to the processes it delivers data to, and then prepare
to be shut down.

Sending a flush message is a blocking action, and so it can be used to
empty the system of data. A flush message is sent just before shutdown
to make sure that all data has been stored on the back-end.

A runner to setup any initial state needed by the process.

The model allows us to reason about a single part of the system in isolation,
and to easily replace one part with another that follows the same API. Since
every process can maintain arbitrary state, it gives us a way to implement

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 58

global state. An example use of this is the statistics process that collects and
displays progress information while the system is running.

One of the big advantages of this model is the inherent concurrency
which makes it easier to exploit parallelism. But there is another interesting
observation: We can insert arbitrary logic at the boundary of processes, since
this logic is defined in the process library and not by each individual process.
There are some interesting use cases for this:

Exception handling: By catching all exceptions directly in the process model,
we could report on messages whose execution failed and implement a
retry mechanism for this scenario.

We could further re-throw the exception in the calling process to get
error tracing on a per-process level, somewhat like stack traces known
from imperative languages.

Throttling: By limiting the maximum number of queued messages in a chan-
nel, the system can auto-throttle itself. When the system is stressed,
new messages will meet a full input channel and will have to wait. This
concept is already used in the prototype.

Profiling and debugging: By measuring the resources used to process a mes-
sage, we could collect statistics to see what kind of messages are the
most expensive and in which processes. This could lead to more detailed
profiling. Combined with a system for detecting anomalies (e.g., Surveilr
[49]), this could be used to detect malfunctioning and strange behaviour
in corner cases.

4.2.2 Processes in the prototype

The Hindsight prototype consists of the following processes (illustrated in
figure 4.1 on the next page):

Statistics: Keeps track of how much data the system has processed so far,
along with the most recently processed file. In general, this process
takes care of all status communications.

Key store: The outer, high-level API for adding keys to a head. This process
uses the key index and the hash store processes.

Hash store: Calculates fingerprints and determines whether a chunk is al-
ready known. New chunks are sent on to the blob store.

Blob store: Responsible for merging chunks into blobs and retrieving these
again later. This process uses the hash index and the external processes.

Key index: Maintains a b-tree of the keys in the current snapshot and their
respective chunk hashes, without relying on other processes.

Hash index: Maintains a b-tree of all hashes available to the repository, with-
out relying on other processes.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 59

External: Takes care of all external communication. This is the only place
where the logic needed for using the external storage (e.g. ssh, S3) is
implemented, and hence all such actions have to go through this process.
This process ensures that all data is compressed and encrypted before
leaving the client.

Key index Hash index

Key store

Network

Key store

Key store

Filesystem

Hash store

Hash store

Hash store

Blob store

Blob store

Blob store

External

External

External

External

Figure 4.1: Hindsight’s processes.

As illustrated in figure 4.1, the main chain consists of the three processes:
key store, hash store and blob store. These processes use the two3 system-
wide processes: key index and hash index. This chain can be replicated to
support parallelism across files, but the system-wide processes can only exist
as singletons due to invariants in the b-trees they maintain4.

Each of these chains outputs to a multiplexer, which takes care of load-
balancing (based on mailbox sizes) between multiple external processes. A
dedicated multiplexer-process is needed here to support the special flush-
message.

Every process supports flushing in its own way: The index processes sync
their b-trees to disk, the blob store empties the buffer no matter the size, and
the external process empties its mailbox and saves everything on the back-end.
Each process flushes the next process in its chain:

key store→ hash store→ blob store→ multiplexer→ external.
The index processes are flushed specially at last, to make sure the log data

is updated after the external-process is flushed (the hash index is updated by
a callback in that process).

4.3 Indices

4.3.1 Overview

The indices used in Hindsight are implemented as mutable concurrent b-trees
with relaxed balance, as described by Larsen and Fagerberg [59]. The tree
varies from regular b-trees [33] in that:

3Three actually; but here we disregard the statistics process as it is not paramount to the
system.

4The index processes could employ worker threads, but the prototype does not do this.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 60

1. It allows periods of imbalance, where one or more nodes contains either
too few (less than order elements) or too many (more than 2 · order) keys.

2. It decouples the update operations from re-balancing: An insert oper-
ation will leave a fully updated leaf, and let the re-balancing process
take care of it instead. This allows for simple implementations of update
operations, while collecting all the complex re-balancing logic in one
place.

In the implementation, a modifyLeaf function for locating and modifying
a leaf is used to unite logic from insert, modify, delete and lookup.
For example, lookup is implemented as5:

lookup key = modifyLeaf (findChild key) $
_ _ _ values -> return $ M.lookup key values

The function findChild is used by modifyLeaf to locate the correct leaf.
When found, the key is looked up in the Map describing the leaf.

To avoid working directly on the persistent storage, the implementation is
built using three structures:

1. A transactional hash table, used to cache nodes in-memory.

2. A transactional cache that combines said hash table with a persistent
storage (e.g. a hard disk).

3. Finally, the concurrent b-tree that uses the cache for storing nodes.
Active tree nodes are held in-memory in the hash table. Updated nodes
are periodically synced to persistent storage, and flushed out of memory.

.
Caching nodes in-memory improves performance, but it is also a necessity

for working with Haskell’s STM library which cannot be combined with IO
operations.

4.3.2 Concurrency in Haskell

We use the “software transactional memory” (STM) [86] model for concurrency.
In this model, a computation can be run as a transaction – either completely
and without interference from transactions running in other threads; or not at
all.

In Haskell, STM is implemented using an optimistic strategy [50]: The
transaction is run with no checks. When ready to commit, the STM system
verifies that no other thread has modified the active state and commits the
new state. When unable to commit, the transaction is safely rolled back.

To guarantee safe rollbacks, all transactions must run inside the restricted
STM monad. The main advantage of this model is the ability to compose
STM actions safely. If a and b are safe STM actions, so is their composition
{ a; b }; this is not the case for explicit locking [54].

See Discolo et al. [38] for a simple queue example using STM.
5The other operations are slightly more complicated, as they need to guide the re-balancer.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 61

4.3.3 STM and IO

The restricted STM monad does not permit IO actions. However, the indices
will eventually need to reside on persistent storage, and thus we need to
execute IO actions.

To get around this limitation, our transactional computations can either:

1. Complete and return the expected result.

2. Return an IO action that needs to be performed. The IO action is
performed and the transactional action is retried until successful. These
IO actions will usually mix IO and STM actions, such as fetching a node
from persistent storage (IO) and storing its value in the cache (STM).

When a transaction returns early due to needed IO, it is not rolled back.
Rather it is committed with the IO action as the result. It is the programmer’s
responsibility that this is safe with respect to the STM state (TVar, TChan, etc.).
This is achieved by computing actions that can request IO before actions that
affect critical state. For example, when splitting a leaf, it is important to create
the two new leaves before storing any of them in the cache (otherwise the cache
may store unreferenced nodes in the persistent storage).

We denote STM computations that can be rolled back without side-effects
as pure STM actions. Any STM computation that can return an IO request
is thereby an impure STM action. Note that this affects composition of STM
actions: A pure STM action composed with an impure STM action will yield
an impure STM action, and thus it is now the programmer’s responsibility
that composing a sequence of STM actions is safe.

4.3.4 Transactional hash table

The hash table used for storing the cache is implemented as pure STM.
It has no IO parts and can therefore never trigger an early return. It is
implemented as a fixed size Array of buckets; each of which resides inside a
TVar. Having one TVar per bucket allows several threads to modify separate
buckets concurrently without conflict. Having a fixed number of buckets
simplifies the logic and allows the bucket Array to reside outside of a TVar,
since the value is never modified.

A bucket is a regular Map from keys to values. Keys are distributed evenly
among the buckets by hashing. Map allows the table to scale well, even with
few buckets and many values and further avoids unnecessary exploit risks
[35, 58].

4.3.5 Transactional cache

The cache is implemented as pure STM computations where possible. But
since the cache is the link between in-memory storage and the persistent
storage, not everything can be pure STM.

For example, when a requested key is not present in the cache it will need
to be fetched from the external storage. This requires an IO computation and
hence the fetch function may return with an IO request. On the other hand,

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 62

store and remove are both written as pure STM, since these are ignorant to
the previous value of the key they are changing.

The cache takes care of fetching values from external storage transparently,
just as it takes care of retrying operations that request IO actions. The latter
functionality is implemented directly in runCache; an IO action.

It does this while remaining back-end agnostic (back-ends are defined as
an instance of our KVBackend type-class) and while providing a mechanism
for consistently syncing the updated values in the cache to external storage
(to ensure crash safety).

Consistent sync. To restrict memory usage, the values in the cache can be
periodically synced to the persistent storage and flushed from memory by a
background process. When a value is synced, it changes state from a pending
update (Write) to a cached value (Read).

Only values that do not represent pending updates are flushed – these are
the values that are in sync with the external storage and are therefore safe to
flush.

However, there is a problem with syncing a tree while it is being updated:
What happens when a thread updates the tree during a sync process? We
want the result of a sync to always yield a consistent tree in the persistent
storage.

One way to do this, is to lock the tree from updates while syncing it. This
would be inefficient, since syncing requires expensive IO operations (like disk
writes and syncs). Instead, we want to run these expensive IO operations in
the background while still using the CPU for other operations.

In order to provide a syncing facility that can run concurrently with
updates as well as maintain a consistent state in the external storage, we have
implemented the following two mechanisms:

Generations: The ability to freeze the current state of the cache. The frozen
state can then be queried concurrently with updates to the newest state.
This is implemented using copy-on-write and only supports one frozen
state. When the frozen state is no longer used it is released for garbage
collecting by the flush process.

Sync dependencies: The ability to define the write order used by the sync
process. This allows updates (store and remove) to include a key, spec-
ifying some value (e.g. a parent node) that must be written after the
updated value. This allows the user of the cache to define a dependency
graph of values, where if A→ B then A is synced before B. Values
with such dependencies are synced before values without, and thus the
process becomes:

1. Values with dependencies are ordered and updated according to
the provided guidance (in the b-tree, these are the nodes whose
value has changed).

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 63

2. Values with no guidance are updated (in the b-tree, these are the
deleted nodes).

The b-tree implementation uses this to achieve bottom-up syncing, by
including an updated node’s parent as the dependency. This ensures
that the node is written before its parent. When deleting, the dependency
tag is omitted. This ensures deletion after writing, which means the
worst that can happen in a crash is leaving garbage on the disk (which
could be cleaned up later).

Sync is implemented by iterating over all values in the tree and syncing
the updated ones. This could be done more efficiently by adding updated
values to a queue as they are modified. Since syncing occurs only rarely, we
consider this a low priority optimisation.

We have now established a concurrent hash table, and a concurrent cache.
In the following section, we describe how they are used to implement a
concurrent b-tree.

4.3.6 Concurrent B-Tree with relaxed balance

A k order b-tree is a tree that allows up to 2k keys in each node. Leaf nodes
consist of keys and their respective values, while branch nodes (internal nodes)
are used solely for routing [32]. Keys are ordered to enable efficient searching.

One of the main advantages of having multiple keys in each node is that
the fat nodes enable efficient read and write operations when the b-tree is
used as an external data structure. Here, it is convenient to read and write
more keys at a time as a single sequential operation.

We have chosen to implement the concurrent b-tree described by Larsen
and Fagerberg [59]. The tree uses relaxed balancing: it will experience periods
where it looses balance, but will eventually regain it. The motivation for
allowing this is higher concurrency; update operations can be reduced to
updating leaf nodes only. This reduces the need for locking and thereby
congestion.

The balance is restored by a special background re-balance process. This
process is responsible for merging and splitting branch nodes, as well as
merging small leaf nodes. Figure 4.2 and figure 4.3 on the following page give
two examples of this process.

0 8

4

1,2,3 5,7

0 8

1,2,5,7

0 84

1,2,3 5,7

In
se

rt
3

Reb
ala

nce

Figure 4.2: B-tree example: Inserting the key 3 overflows the leaf (order is 2),
which is first split by the insert operation and then merged back
into the parent by the re-balance process.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 64

1 63

2 5

Reb
ala

nce

1 63

2

1 6

2

Dele
te

5

Figure 4.3: B-tree example: The delete operation results in an empty leaf, which
is later cleaned by the re-balance process.

A pleasant side effect of decoupling re-balancing from queries and updates
is simpler operations and improved reuse of logic. Finding the right path
from the root node to the leaf is shared between insert, modify, delete, and
lookup.

As a consequence of concurrency, routing must be handled specially: The
re-balance process may merge two branch nodes into one, just when the insert
operation was about to read one of them. Thus, routing may fail.

Though a rare occurrence, this case needs special treatment. Our solution
is to simply retry the operation n times6. If the operation still fails, something
must be wrong (e.g. the tree is in an invalid state) and the exception is
re-thrown. Due to the decoupling of re-balance logic and tree operations, this
routing logic is shared among all tree operations.

Iteration. For safe iteration in a concurrent environment, the cache feature
“generations” (see section 4.3.5 on page 62) is used to freeze the current version
of the b-tree. Thus, toList, foldli and foldri can all be used while updating
the tree concurrently. In the prototype however, only toList is implemented
to support this.

An alternative way of implementing iteration is to add a reference from
each leaf node to the next. This would require some extra book-keeping, but
may yield a performance gain in case of intensive iteration. We have chosen to
simply freeze the tree, since this feature was already present and used when
syncing.

Consistent sync. To maintain a consistent state of the tree in the external
storage, it is important to never write out a node before the children it
references. This is achieved with bottom-up syncing, using sync dependencies
in the cache (see section 4.3.5 on page 62). Whenever a node is updated with
a new value, a sync guide is included to tell the cache to sync this newly
updated node before its parent. When removing a node, no guide is included.
The result is a two-pass sync: a) nodes are updated from leaf to root; and
b) nodes no longer referenced are removed.

Since all writes are done atomically7 this guarantees a consistent tree. In
case of sudden crash, the worst scenario leaves unused nodes. The tree will
remain valid.

6Here, n is an arbitrary large number compared to the height of a b-tree. A limit is required
in case the tree is actually corrupted.

7Atomicity is achieved by first writing the value to a temporary file and then moving this file
onto the final location.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 65

Limitations of the implementation: We have not implemented all of the
required b-tree logic. Specifically, we have accepted the following short-
comings:

1. Re-balance logic to handle empty leaves is missing. There is currently
no logic in the re-balancer to merge under-full nodes.

2. Nodes in need of re-balancing are only discovered when created. This
works as long as the tree is in use, but if it is synced to disk and restored
later it may stay out of balance forever.

3. findMin and findMax are incomplete. Current implementations of these
functions only work partially: they fail in the non-trivial case, where
the value queried is not located in an outermost leaf. This case emerges
after deletion and is never resolved due to item 1.

If the re-balancer could handle deletion, these functions could simply
tell it about the empty leaf and retry from the root until succeeding.

4. foldli, foldri and search may fail if run in parallel with a re-balance
process, but toList is safe since it is using the generation system to
freeze the tree.

Item 1 and Item 2 is a matter of implementing the required functionality.
There are no limitations in the design to prevent it.

Item 3 is trivially solved when the re-balancer is complete: when the
troublesome case occurs, simply tell the re-balancer about the empty leaf and
retry from the root of the tree.

Item 4 could be solved by freezing the b-tree in all these functions (using
the generations feature from the cache) like with toList. However, such
operation can be expensive in terms of memory, since all changes during the
iteration have to be copied. Another solution is to change the leaf structure to
include pointers to the previous and next leaf. This would introduce further
complexity when splitting a leaf as well as in the re-balancer. But it is unlikely
to hurt performance, since re-balancing and splitting are rare actions.

4.3.7 Locality

As discussed in section 3.2.2 on page 23 we use the system to save its own log
data. To improve inter-blob locality of saved b-trees we save them according
to the Van Emde Boas layout [92].

4.3.8 Summary

Above, we have presented a concurrent b-tree with relaxed balance, imple-
mented in Haskell using software transactional memory. To summarise, the
implementation supports:

Isolation: The operations insert, delete, lookup, modify and toList all exe-
cute atomically and in isolation, without interference from other threads.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 66

Consistent sync: When the b-tree is stored on persistent storage (e.g. a local
disk) it is stored bottom-up – from leaves to root – to ensure consistency
in the event of failure.

Online re-balancing: A re-balance thread takes care of re-balancing the tree,
and does so concurrently with other operations.

Back-end agnostic: The back-end used for persistent storage can be changed.
In the prototype, the b-tree is used both with a local back-end (when
taking a snapshot) and with an external back-end (when inspecting a
snapshot).

4.4 Crash recovery

As mentioned in section 3.7 on page 43 we distinguish program crashes where
data in memory is lost, but data written to disk is safe (e.g., power failure),
and the more rare disk crashes where data stored on disk is lost.

4.4.1 Program crash

In the event of a program crash, the local log data is what the program
managed to store before the crash, and thus the key index and hash index may
be out of sync. Thus we must be able to bring the indices back to a consistent
state, as well as remove blobs that have been transferred to the back-end but
whose references have not yet been committed to the hash index.

Upon beginning a snapshot, two directories named rollback are created
in the hash and key indices’ directories. They act both as a marker to show
that the system is in the process of taking a snapshot, and as a place to save
log files to allow the system to recover itself to a consistent state.

To aid recovery in the event of a crash, several log files are maintained. To
get an overview of the measures we take, let us follow the data flow from a
file being backed up and till it is on the back-end.

KeyStore. When a file is inserted, the first thing that happens is that its
path is appended to a log in the key index’s rollback directory. This
makes it possible to later track down files of which not all chunks were
registered. The file entries are logged in files in the rollback directory,
before entering the KeyStore processes.

To lessen the penalty of syncing the logs to disk, we log many files at
once. This is possible because the files that shall be backed up are known
in advance. The number of file paths to write each time is chosen to be
128. Benchmarks suggest that this is a good number (see section A.2 on
page 98).

HashStore. When a chunk is inserted, it is not added to the hash index right
away. It first resides in an in-memory cache as a “promise” until the
blob containing the chunk is safely stored on the back-end. A callback

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 67

function to be triggered when this is certain, is created to insert the
chunk’s hash and blob position into the hash index, removing it from
the in-memory cache.

BlobStore. Chunks and their respective callbacks are grouped into blobs.
When a blob is full and ready for transfer, a log file is written to the
hash index’s rollback directory. The name of the file reflects the ID of
the blob, while the contents describe a list of the hashes whose chunks
are in the blob. A single combined callback function is created and sent
along with the blob to the External process.

External. Only after a blob has been stored safely on the back-end, the final
callback function – and thereby all the callbacks from the hash index –
is evaluated. The effect goes all the way back to the HashStore which
commits the relevant chunks to the hash index and removes them from
the in-memory cache.

Thus we know that chunks that are referenced by the hash index have
been uploaded.

Now that we have seen the elements of the crash recovery strategy, we show
how the system recovers from a crash. We are concerned with three things:
a) unreferenced blobs on the back-end (those that are not mentioned by the
hash index); b) chunk hashes that reference non-existing blobs; and c) entries
in the key index that reference chunks that have not yet been transferred.

These are the only structures involved in taking a snapshot, and so it is
enough to ensure that they are brought back to a working state.

a) We need to remove blobs that were transferred, but whose chunk hashes
are not yet in the hash index. We can do this by running through the
log files in the hash index’s rollback directory. These files give us the
blob IDs along with their respective hashes. If one of the hashes is in
the hash index, the blob has a reference and is kept; if not, it is deleted
from the back-end.

b) Because chunk hashes are kept in memory until they are certain to have
been transferred to the back-end, it is impossible for a chunk hash in the
hash index to reference a blob that does not exist on the back-end.

c) Log files show the keys inserted in the KeyStore. In the event of a crash,
we check for each one whether all the referenced chunks is in the hash
index. If any chunk is missing, the file is deleted from the key index.
Notice however, that due to deduplication the missing chunks only will
be transferred when the snapshot operation is resumed.

Flushing log files. The observant reader will notice that we have not dis-
cussed removal of log files, but surely this is needed to prevent the system
from rolling back all its progress. To remove individual file entries from the
log files in the key index’s rollback directory, we need to be able to tell when

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 68

all chunks from a particular file have been saved, and then delete the file from
the log.

To prune the log files in the hash index’s rollback directory we must be
able to tell when the hash index is safely stored on disk and which “in flight”
hashes it contains. One approach is to force syncing of the hash index to disk
for each blob that is transferred. This would ensure that the blob’s chunks
were referenced, and the log file could be removed. But this has a large impact
on performance.

If we could know the progress of each chunk throughout the system, we
could prune the logs precisely, however this holistic worldview does not fit
well with our process model where each process has limited knowledge of
the system. And so we have not chosen this option.

Our solution to both problems is to periodically flush the whole system (by
sending a flush message, see section 4.2.1 on page 57). This action is similar to
what happens when the snapshot has finished and the system is shut down,
except in this scenario the system continues the snapshot afterwards. During
flushing all data is forced out of the system to the back-end, and the indices
are synced to disk.

After flushing all the log files can be deleted. So the worst case scenario is
that the files inserted between flushes have to be processed again; however the
stored blobs that are referenced from the hash index need not be stored again.

As of such, our worst case scenario yields performance comparative to
other backup systems’ best case.

4.4.2 Disk crash

Above we assumed that no data was lost from the disk. Now we see how
to recover from a crash where data stored on the disk is lost. Since we use
checksums on all external data structures, we can detect damaged data, such
as bit-rot, and treat it as lost.

As discussed in section 3.7 on page 43, it is necessary for Hindsight to save
its log data periodically.

When a snapshot is taken (with the snapshot command) its key index is
backed up as described in section 3.2.2 on page 23, leaving the hash indices
(one primary and one secondary – section 3.2.2) locally.

The seal command takes care of this. First the primary hash index is
backed up in a secondary run; a regular snapshot is taken, using the secondary
hash index for deduplication, and the resulting key index is saved as a tarball.
Then the updated secondary hash index is saved, also as a tarball. References
to these two tarballs are saved in the snapshot index under the special names
__pidx and __sidx (for primary and secondary index).

The snapshot index is saved as a tarball under the special name snapshots
as usual.

If a disk crash happens, it is enough to reconstruct the hash indices; the

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 69

next snapshot might take longer to complete because the head has been lost,
and so the full key index must be constructed, and every file inspected. But
that is only a (very rare) performance issue.

The command recover is used to reconstruct the hash indices. It performs
the following steps:

1. Download the snapshot index tarball (saved under snapshots) and
unpack it.

2. Use the snapshot index to retrieve the tarballs of the secondary hash
index and the key index resulting from the snapshot of the primary hash
index. Unpack them.

We now know the files needed by the primary hash index (from the key
index), as well as their positions within blobs (from the secondary hash
index).

3. Use the two indices just retrieved to checkout the primary hash index.

Of course, everything backed up since the last seal command is lost.
Furthermore all references to blobs transferred in that time are lost. This
means that it is possible to leave “dead” blobs on the back-end in this rare
event.

If the back-end API is extended with a LIST command, we can find and
delete these blobs, but since the case in which we leave them there is so rare,
we have decided against it; at least in the prototype.

4.5 Back-end modules

In order to ease the process of implementing support for a new back-end, we
have decided that such functionality does not need to be in Haskell, like the
rest of the implementation. This leaves the choice of programming language
to the developer implementing the module and hence supports the idea of
using “the best tool for the problem”.

We have implemented support for four different back-ends using two
different languages, none of which is Haskell:

bash scripts: The modules for local storage, SSH and Amazon S3 are all
written as bash scripts. The Amazon S3 module invokes the s3cmd CLI
tool.

Python: The module for CouchDB is written as python scripts that rely on
the Python couchdb library.

To implement a module, one has to write three programs, all of which
take the relevant blob name as their only argument and exit with either return
code zero (success) or non-zero (failure):

get: retrieves the requested blob and writes its data to stdout. If the blob
does not exist, the program exits with a non-zero return code.

Example: get B4X62bMOaPqIMHhKiirc70 > data

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 70

put: takes the blob data on stdin and puts it on the back-end. If the file
exists, it is overridden. If the command exits with return code zero
(success), it must be possible to retrieve the data with get.

Example: put B4X62bMOaPqIMHhKiirc70 < data

del: deletes the blob. If the blob does not exist, the program must ignore the
command and exit normally, with return code zero.

Example: del B4X62bMOaPqIMHhKiirc70

Back-end modules are ignorant of the encryption and authentication used
to protect the data. All this is applied before the module ever sees the data.

An advantage of implementing back-end modules as small programs is
that one can use the language that provides the best bindings, or merely shell
scripting when a CLI tool is available.

A disadvantage is that if the best bindings happen to be present in Haskell
we still have to call programs and make sub-processes. However, we do not
think that this overhead is significant compared to transferring data to the
back-end.

Furthermore, the described API does not show how to handle errors. If
something goes wrong, the program can exit with a non-zero return code,
but it cannot inform Hindsight of what the error was. As a result, there is
currently no way of distinguishing a “blob does not exist” error from a “no
network connection” error.

We leave designing a more expressive framework for implementing back-
end modules as a topic for further work (see chapter 6 on page 87).

4.6 Deletion

To reclaim data that is no longer needed by the live snapshots, the prototype
implements the conservative garbage collector described in section 3.6 on
page 33. It operates in four phases:

Post snapshot: After a snapshot has completed, a Bloom filter is generated to
represent the hashes referenced by it.

The Bloom filter is compressed and saved on the back-end along with
the key index.

GC init: Old versions of hash indices are deleted from the back-end (there is
one for each seal operation), leaving just the newest versions.

GC mark: The purpose of this phase is to mark the dead hashes for deletion.
This is done in two steps:

1. Retrieve the Bloom filter for each live snapshot.

2. Check for each hash whether it is present in one of the Bloom filters.
If not, mark it as dead.

GC sweep and compact: This phase reclaims space based on the dead hashes
from the mark phase. It consists of two steps:

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 71

1. Locate the blobs that only dead hashes refer to. These blobs are
deleted along with the hashes referencing them.

2. Locate the blobs that only few living hashes refer to. These blobs
are retrieved and merged to form new blobs, with no dead data in
them.

Splitting the mark and sweep phase in two allows us to reuse the sweep-
compact implementation with other garbage collectors’ mark phase, if the
prototype is ever extended with more collectors.

In the following sections, we discuss crash safety and the expected perfor-
mance of our conservative GC. In chapter 5 on page 77 we evaluate it through
a series of tests.

4.6.1 Crash safety

Each step of the GC mark and sweep routines are idempotent; if the process
is aborted, it can be safely restarted. However, the implementation does not
yet ensure that no blobs are not left on the back-end without reference. This
can happen if the process is aborted while rewriting small blobs into larger
ones. To solve this, a recovery procedure should be implemented.

Further, the implementation is not safe against hardware failure: if the
disk crashes, the updated hash index is lost, along with the references to new
blobs introduced by rewriting. To make the process safe, one would have to
seal the updated hash index after writing the new blobs, but before deleting the
old (thus rendering both the new and old hash index valid, in case of a crash).

4.6.2 Filter configuration

The configuration garbage collector uses Bloom filters to identify live hashes,
which means not all dead hashes can be found. Thus it is important to config-
ure the Bloom filters to yield an acceptable accuracy in live hash identification,
while not using too much space.

Our conservative GC uses 4 hash functions and 16 bits per element (chunk
hash). A Bloom filter with this configuration, covering the hashes referenced
by the key index, is added each snapshot. This gives each filter a false positive
rate, in terms of chunk hashes, of:

p ≈ (1− e−4/16)4 ≈ 0.002394

Adjusting this, by the number s of filters – one per snapshot – gives a
chunk reclaim rate of

r ≈ (1− p)s

This configuration of the GC can reclaim 99.8% of the dead chunks, with
one snapshot, 95.3% with twenty snapshots and 78.7% with one hundred
snapshots. The 50% mark – where only 50% of dead hashes can be marked as
such – is reached at 289 snapshots.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 72

This reclaim rate is per snapshot, and so the total amount of garbage will
accumulate when more snapshots are deleted. However, the reclaim rate
improves with the total amount of garbage, since garbage from older deleted
snapshots (which gave false positives) can also be reclaimed. We investigate
this effect during evaluation in chapter 5 on page 77.

Our configuration is inspired by Mitzenmacher [67], who proposes the use
of fewer hash functions to allow for better compression ratios in the stored
filters, giving a lower false positive rate per stored byte. This could also open
up for exploitation of redundancy across filters from the same snapshot family.
Our prototype does not yet exploit such redundancy, and simply compresses
the filters like any other data.

We have identified a problem with using varying Bloom filter sizes in this
kind of GC: If we start with some small snapshots (with a small number of
chunks) we get small Bloom filters, which is fine due to the small number
of chunks. If we then introduce a lot of new data in a new snapshot, that
snapshot gets a significantly larger Bloom filter, so it can identify its many
chunk hashes accurately.

But all filters are used by the GC to identify which chunks are alive, and
so the small filters introduced by the first snapshots are now used against
more hashes than they were designed for, thus yielding a smaller reclaim rate
than expected.

In the implementation, this problem is relaxed by having a minimum filter
of 16.000 bits and by doubling the Bloom filter sizes on each resize. This gives
most filters some extra room for expansion.

4.6.3 Merging Bloom filters

Bloom filters of equal length can be trivially merged by or’ing their bit-vectors.
This gives a new Bloom filter of the same size, but containing elements from
both filters. The advantage is that checking each hash against the filters can
be done using a single filter which is faster. But the false positive rate has
increased – the size is the same, but the number of hashes is the sum of that
from the two merged filters – so less chunks will be reclaimed.

To stay effective, the GC in the prototype does not merge filters. However,
a merged filter could be used as a heuristic in front of the full filters to check
whether a hash has any chance of being alive. If the snapshots share most of
their hashes, their combined hashes will not be that many extra elements, and
the combined filter’s false positive rate not that much higher. In this case, this
heuristic may prove effective.

4.6.4 Compacting

Since the mark phase can only identify some of the dead hashes, it is important
that the sweep phase can reclaim space, even when blobs are only partially
dead.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 73

If a blob contains h hashes, its probability of being completely reclaimed is
just rh, where r is the reclaim rate from section 4.6.2 on page 71. Thus if 1000
hashes reference dead chunks stored in the same blob, there is a 9.1% chance
that all the hashes will be marked as dead and thus a 90.9% risk that one of
them will remain alive, and that the blob cannot be deleted8. But on average,
997 of the 1000 hashes will be marked dead, and this space can be reclaimed
by rewriting the blob.

The way this is implemented in the prototype is to check whether a blob
looks small. Only blobs that are certain to contain fewer chunks that what
a blob has room for (compared to the maximum chunk size) are rewritten.
The prototype cannot discover all small blobs, since it does not maintain any
chunk size information locally and thus cannot compute how big a part of a
blob is in use without downloading it.

In the prototype, rewriting blobs are done after the garbage collector
has run, and is thus performed eagerly. An alternative method is employed
by Cumulus [93], which never rewrites blobs (called segments in Cumulus).
Instead hashes in blobs with low utilisation are marked “do not use”. If a new
snapshot needs to reference a chunk whose hash is “do not use”, it must store
the chunk on the back-end as if it was new. If old snapshots are continually
deleted then blobs with low utilisation will eventually perish.

This method has the advantage of rewriting the small blobs in a way that
preserves locality. The live chunks are written with other chunks referenced
by files that contain them.

The disadvantage is that small blobs are only rewritten if new snapshots
reference the chunks inside them.

The prototype rewrites small blobs eagerly, as they are discovered, as a
simple yet efficient strategy.

4.6.5 Garbage collection of log data

Since the primary indices are deduplicated through a secondary instance of
the system, the same garbage collector is used. The secondary indices are
saved as tarballs and can be deleted directly.

There is one extra concern: When the seal command is run, a new snap-
shot of the primary index is taken. Before garbage collection, every snapshot
but the latest is deleted in that family.

4.7 Security

We want the prototype to be safe, yet we feel we are not fully qualified because:
a) it is not the main focus of the project; and b) plenty of examples exist where
implementing cryptography logic has gone wrong in spite of being the main
focus. Here, we list some such examples:

8The statistics presented in this paragraph assumes a single live snapshot. The risk is higher
with more snapshots.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 74

AES: Advanced Encryption Standard [9] – have several implementations that
suffer from timing attacks [15].

Google Keyczar: A high level crypto library – suffered from a timing attack
when comparing hash values [60].

OpenSSL: An open source implementation of cryptographic routines – had a
timing attack in their RSA implementation [70].

SSL: Secure socket layer used in HTTPS – was vulnerable due to a flaw in
the renegotiation logic [80].

Tarsnap: Secure backup – didn’t use unique nonces (after a refactoring of the
code) which rendered the encryption insecure [74].

We understand that getting security right is extremely difficult. And
even when encryption works correctly it is not possible to verify the security
guarantees.

In Hindsight we have a very small and simple crypto-system. We want
encryption and authentication of all stored data. No more; no less. But we do
not trust our ability to implement cryptography logic securely. Instead, we
minimise the amount of code that can impact security by using the high-level
crypto-library NaCl [19] (pronounced salt) and by limiting the number of
processes that know about cryptography.

4.7.1 Fingerprinting

For chunk fingerprinting, the prototype uses 256-bit Skein hashes [44]. Skein
is one of 5 finalists in the SHA-3 competition [69], and we use this algorithms
solely as a placeholder while waiting for the new standard (the SHA-3 winner).

As with the AES selection process, SHA-3 is another year-long selection
process, this time with the goal of finding a secure hash function to replace
SHA-2 as the new standard. During the process, cryptographers world-wide
collaborate in an attempt to break the submitted candidates. The process
started with 64 entries in November 2007 and is now down to 5 finalists:
BLAKE [11], Grøstl [48], JH [95], Keccak [20] and Skein [44].

4.7.2 NaCl: a high level crypto library

NaCl gives us a high level encrypt function which handles encryption and
authentication given a key and a random nonce. NaCl is designed to be
easy to use, secure and fast [18, 19]. It uses standard algorithms with high
security margins. Specifically, the NaCl-routines called by our prototype uses
Salsa20 with 256-bit keys for encryption and poly1305 for authentication. The
eSTREAM project showed some confidence in the 12-round Salsa20/12. NaCl
is conservatively using the 20 round variant XSalsa20/20 that uses a nonce of
192 bits instead of Salsa20/20’s 64 bits [17, 19]. The authentication algorithm,
poly1305, was originally published with a security proof depending on the
security of the underlying encryption (here XSalsa20/20) [16].

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 75

NaCl and Google Keyczar [60] seems to serve the same purpose. We
went with NaCl due to its experienced authors and its fine Haskell bindings.
Keyczar does however have the advantage of built-in versioning of the configu-
ration used. This allows backward compatibility when outfacing an algorithm.
We have to maintain this ourselves when using NaCl.

On the other hand, NaCl provides asymmetric encryption (based on elliptic
curves) in case the prototype needs to be extended with this at some point.

4.7.3 Crypto-aware parts of the prototype

Due to the process model used in the prototype, we can point out the specific
processes that are aware of cryptography. These are:

Initialisation: The code that initialises a new repository needs to generate a
new client key and store it locally.

External The process that communicates with the back-end needs to encrypt
and authenticate all data before transmitting it.

Since the logic for communicating with the back-end is only available
through the external process, this is the only place that needs to perform
encryption and authentication.

We wrap the Haskell salt library in our own very small crypto library. This
gives us stricter typing on nonces, which were originally of type bytestring.
In addition, we have a very simple API for maintaining the client key:

newMasterKey path: Creates a new master key and writes it to the speci-
fied file.

readMasterKey path: Reads the master key from the specified file.

There is no way of modifying the key outside this module. This makes it
less likely to accidentally swap the secure key for something predictable.

4.7.4 Lacking features

The prototype does not support the master key indirection. Instead, the
master key is stored locally as part of the Hindsight repository (where the
client key should be stored). There is nothing in the prototype that prevents
implementation of this.

The prototype does not store information about the cryptographic scheme
used. To implement this, one would have to add a version to all blobs. We
believe a single byte would prove sufficient, since their are usually many years
between new versions of cryptographic standards (the widely used Advanced
Encryption Standard is from 2001).

4.8 Iteratee

Before settling on the process model (described in section 4.2.1 on page 57)
we looked at the iteratee and enumerator packages for Haskell.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 4. IMPLEMENTATION 76

The iteratee package by Kiselyov and Lato [57], introduced an abstraction
for efficient and composable data processing based on left folds. Though
a conceptually simple approach, the library was more than just difficult to
understand, which is seen by the number of questions it got on the Haskell
Cafe mailing list from frustrated developers.

Millikin [66] tried to clean things up with the enumerator package, in an
attempt to embrace the community. He succeeded, in that this package is now
more used than the original (29 versus 11 packages on Hackage), but still the
types and terminology gives usage of this package a steep learning curve.

When we started our project, enumerator was the most popular package
for this kind of thing. So we felt it natural, to investigate whether we could
implement Hindsight’s data flow within this model. We thought about having
an enumerator for each step of the process, as a data pipeline from left to
right:

file reading→ chunking→ blob store→ external storage

But we ran into some issues, that we never managed to solve:

• How can we handle concurrency, so that more than one chunk can be
processed at the same time?

• How can we maintain global state, as needed by b-trees in the form of
caches?

• How can we handle bi-directional information flow, as when the chunker
needs to ask the hash index whether or not the chunk’s hash is known?

Instead, we found that the Erlang-style process model, employed by the
prototype, allowed all this, and in a much simpler way. And it even con-
tributed with some things that the enumerator library may not have: A simple
way to collect statistics, a global means for error handling and automatic throt-
tling due to limited mailbox sizes (see section 4.2.1 on page 57 for details).

During this project, the authors of the Yesod Web Framework [6] released
the conduit package [88]; yet another approach to efficient stream processing.
While it implements roughly the same concepts as the other two packages, it
does so with a different approach. We have not carefully examined whether
this package makes it easier to implement something like Hindsight.

What we have done, is to use the conduit package for one of the iteratee
package’s original purposes: Strict IO. Even though the Hindsight prototype
handles arbitrarily large files, it does not rely on lazy IO, which is the classic
way of doing this in Haskell. Instead, it employs the conduit package as a
means for efficient, yet encapsulated, strict IO.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

Chapter 5

Evaluation

Our original idea for the design of the Hindsight backup system was a lot
simpler than what we have presented in the previous sections:

We wanted to chunk files and store the chunk hashes in b-trees.
The unique chunks were to be grouped in blobs – to lower the
number of transfers – and sent to the back-end.

We were aware, that deletion should be possible and that b-trees
could allow lazy querying. We also wanted a simple abstraction for
back-ends, and knew that the needed operations were few.

While this is still the foundation of the current design, a range of additions
have been made since we started.

Security and compression was trivial to add in.

Crash safety with recovery was added by making the b-trees robust with
bottom-up syncing and log files were added to aid recovery.

Deletion was something we always thought possible, however exactly how it
could be done was under continuous discussion (especially regarding
crashes). The current conservative garbage collector was implemented
as an experiment, because we could not find any other system using
this method. As it turns out, it works quite well (though not in all
circumstances).

Deduplication of log data was a feature we got for free by invoking the
system recursively; something we discovered gradually through the
design phase.

Back-end agnosticism was gained through back-end modules with minimal
requirements.

Statistics and progress is a pleasant feature for impatient users. It was a
quickly introduced feature due to the process model used in the imple-
mentation.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen 77

CHAPTER 5. EVALUATION 78

We think this shows that the design is at least somewhat flexible: whenever
we have found a problem, or wanted to add a feature, it was never too hard
to add in. Of course, every change takes time of thought and consideration,
but the design itself has not yet resisted.

5.1 Comparison

To get a feel for the rôle Hindsight fills among backup systems we give an
overview of existing systems. In table 5.1 on page 80, we compare our system,
Hindsight, with eleven other systems.

We compare the systems on the following points, inspired by the properties
listed in the analysis (section 2.2 on page 12).

Multiple snapshots. Whether the system can keep several versions of the
stored data. Multiple snapshots can be emulated by explicitly storing
several versions of the same data in the same snapshot, which is what
S3QL [79] does. We will not regard this technique as “multiple snap-
shots”, because of the problems of copying the data and marking it
read-only.

Simple back-end. We regard a back-end as “simple” if it can do its job
without any semantic knowledge of the data it stores. A regular key-
value store is an example of a simple back-end. We discussed back-ends
in section 3.9 on page 51.

If the system uses a simple back-end, it is easier to extend it to support
new back-ends, thus making the system more flexible.

Sub-file deduplication. To avoid storing the same data over and over all
backup systems apply some form of deduplication. The granularity of
deduplication is important for its effectiveness.

We classify deduplication scope and granularity:

L/file (Local scope and file-level granularity): Files are only compared
with their former version, and if they have changed they are stored
in full.

L/sub (Local scope and sub-file granularity): Files are still only com-
pared to their former version, but only changed parts are saved.

G/sub (Global scope and sub-file granularity): Sub-file data blocks are
deduplicated across all files and snapshots.

Fingerprint size. The size of the used fingerprint. When using deduplication,
data objects must be compared. For performance reasons, it is a common
practice to compare objects by their fingerprint. The fingerprint function
is usually a cryptographic hash [43].

Since a fingerprint has a fixed size, which is almost always less than the
size of the data it identifies, there is a risk of collisions. The larger the
fingerprint, the lesser the risk.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 5. EVALUATION 79

Content-aware chunking. How a file is split into chunks (which implies
sub-file deduplication) also decides the effectiveness of deduplication.
Content-aware chunking as opposed to fixed-size chunking gives better
deduplication in some cases. Refer to section 3.5 on page 28 for details.

Using blobs. Whether the system collects chunks into blobs. Two marks (33)
are given when blobs are locality-preserving.

Storing many objects on the back-end can be problematic for several
reasons: a) for each object sent over the Internet there is an overhead;
and b) storing many objects can be more expensive than storing few (for
example, this is reflected in the pricing model for Amazon S3 [85], in
which a small amount is charged for each request). To keep the number
of stored objects low, they can be collected into blobs.

If files are split into chunks (implying sub-file deduplication) it can be
beneficial to preserve the locality of chunks in the blobs; for example,
the amount of blobs which must be downloaded to reconstruct a file
will be low if most of the chunks in the blobs belong to that file.

Security. Whether the actual data stored on the back-end leaks critical in-
formation about the data being backed up. Here, we do not count the
time of backup or the amount of data stored as critical information. See
section 3.8 on page 47 for details.

Log data deduplication. In all but the simplest backup solutions there will be
some form of log data; data giving structure to the data which is backed
up (e.g. which chunks came from what file?). It is thus crucial to preserve
log data, for without it the original data is hard or impossible to retrieve.
The “Log data deduplication” column tells whether deduplication is
applied to lower the overhead of the log data when storing it.

Full snapshots. Whether each snapshot reflects the full system being backed
up, or only the parts of it that have changed since earlier snapshots; that
is full snapshots versus incremental snapshots.

Deletion. Whether the system supports deletion of snapshots. Supporting
deduplication complicates deletion of stored objects (see section 3.6 on
page 33), and thus not all systems supporting deduplication supports
deletion.

Transparency. A measure of how easy it is to verify the functionality of the
software.

We give marks for each of these points:

¶ Technically well documented, such as research and white papers.
Of course the word “well” implies a subjective judgement on our
part. We disregard user documentation, such as man pages.

· Open-source software. An advantage is that the system can be
verified to implement the claimed design. Additionally, if lacking
proper documentation, one can resort to reading source code.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 5. EVALUATION 80

M
ul

ti
pl

e
sn

ap
sh

ot
s

Si
m

pl
e

ba
ck

-e
nd

D
ed

up
lic

at
io

n

C
on

te
nt

-a
w

ar
e

ch
un

ks

Fi
ng

er
pr

in
t

si
ze

(b
it

s)

U
se

s
bl

ob
s

Se
cu

ri
ty

Lo
g

da
ta

de
du

pl
ic

at
io

n

Fu
ll

sn
ap

sh
ot

s

D
el

et
io

n

Tr
an

sp
ar

en
cy

C
om

pr
es

si
on

Ef
fic

ie
nt

qu
er

ie
s

Venti [77] – – G/– – 160 3 7 – – 7 ¶·¸ 3 –
bup [72] 3 7 G/sub 3 160 33 7 3 3 7 ¶·¸ 3 7
S3QL [79] 7 3 G/sub 7 256 7 7 (3) – 3 ·¸ 3 7

Duplicity [42] 3 3 L/sub 3 128 7 (3) – 7 3 ·¸ 3 7
SAM2 [90] 3 7 Hybrid 3 160 7 7 7 3 7 ¶¸ 7 7

rsnapshot [83] 3 7 L/file – – 7 7 – 3 3 ·¸ 7 7
Tarsnap [73] 3 7 G/sub 3 256 ? 3 7 3 3 (·) 3 7
Cumulus [93] 3 3 L/sub 3 160 3 3 3 3 3 ¶·¸ 3 7

Amanda [36] 3 7 L/file – – 7 (3) 7 (3) 3 ¶·¸ 3 7

Time Machine [5] 3 7 L/file – – 7 7 – 3 3 ¸ 7 7
Brackup [2] 3 3 G/sub (3) 160 7 (3) 7 3 3 ·¸ 3 7
Hindsight 3 3 G/sub 3 256 33 3 3 3 (3) ¶·¸ 3 3

Table 5.1: Systems overview. We write “–” when a property is irrelevant for
the system in question. See remarks for details.

¸ Black-box inspection. The data can be retrieved as it is stored on
the back-end.

¸ White-box inspection. The data is stored in an open and easily
accessible format.

Compression. Whether a compression algorithm is applied to the data before
storing. We do not distinguish between the various compression schemes
(zlib, bzip2, lzma etc.), since changing from one scheme to another is
usually a trivial task1.

Efficient queries: Whether it is possible to query the hierarchical structure of
a snapshot without retrieving its entire log data. An example of a query
could be listing a directory within a snapshot.

Remarks

Venti: Venti is intended as a back-end for storage applications. It uses
magnetic disks for storage. Therefore it is meaningless to classify the system
by the first four points (multiple snapshots, sub-file deduplication and method
of chunking are the responsibilities of the backup application and there is no
back-end because Venti is the back-end). In Venti an arena roughly corresponds
to a blob.

bup: bup is a back-up system based on Git [4]. It stores data in git packfiles.
One such roughly corresponds to a very large blob (up to 1 GB). bup does not
yet store any file meta-data.

1A trivial task in the design. Not if existing snapshots need to be migrated.
2Semantic-Aware Multi-Tiered Source Deduplication Framework for Cloud Backup.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 5. EVALUATION 81

A quote from the bup developers on deletion:

Because of the way the packfile system works, backups become
"entangled" in weird ways and it’s not actually possible to delete
[. . .]

We’ll have to do it in a totally different way. There are lots of
options. For now: make sure you’ve got lots of disk space :)

In order to feature global sub-file deduplication, bup maintains an index
of all known chunks (called midx – “merged index” we guess).

It would not be too hard to implement more efficient queries. Git (and
therefore bup) saves the directory structure as separate directory listings, thus
it would be possible to just retrieve the relevant listings. But if all files are
stored in the root, even this would be inefficient.

S3QL: It is meaningless to talk about full snapshots because S3QL does not
support multiple snapshots. A limited sort of deduplication is applied to the
log data: files are referenced by an ID while the actual filenames are stored in
another index. This saves space if the same files are stored many times (e.g.
when simulating snapshots by creating full copies).

Duplicity: Supports full and incremental backups. Incremental backups
are stored as rsync delta files. Duplicity maintains no log data. Security is
supported through GnuPG, but is not the default.

SAM: A hybrid deduplication is used in SAM; Files are deduplicated on a
sub-file basis in the client, and on a per-file basis in the server. Notice that
Tan et al. [90] writes “local deduplication” to mean deduplication among
all data being backed up from a single client, and “global deduplication” to
mean deduplication among data backed up by all clients. In contrast we
write “global deduplication” and “universal deduplication”, respectively. See
section 3.5 on page 28 for details on deduplication.

rsnapshot: The rsync algorithm is used for transfer, but deduplication is
only applied at file-level on the back-end. Hard links are used to create full
snapshots.

Tarsnap: We are not certain as to whether Tarsnap collects the file chunks
in blobs or not. What happens after deduplication is not described. When it
comes to transparency, Tarsnap has a an open-source front-end, a proprietary
back-end prohibiting black-box inspection, and no technical documentation.

Cumulus: The object fingerprint hash is SHA-1 but can be replaced. A
segment in Cumulus corresponds to what we call a blob.

Vrable et al. [93] writes that Cumulus can be extended to perform global
deduplication. However, we fail to see how this can be done without some
compromises:

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 5. EVALUATION 82

If deduplication is not to be overly slow, fast access to the known chunks
is needed. Thus a global fingerprint-index must be maintained (à la bup’s
midx-files).

For each snapshot, Cumulus saves a summery of the segments used by
that snapshot. This summery is used to enable garbage collection. But if
a global index is maintained then the chunks in deleted segments should
be removed from it. Therefore a list of these chunks must be kept for each
segment; this is essentially a reverse fingerprint-index.

Therefore global deduplication comes at the cost of not one, but two, global
indices.

Amanda: Native system tools are used for the actual backup. For the table
we have assumed that GNU tar was used. Security is supported through
GnuPG, but is not the default. Amanda can be used to restore full snapshots,
but using GNU tar they will be stored incrementially on the back-end.

Time Machine: The system is closed source and undocumented, but it seems
to work roughly as rsnapshot, possibly with the exception of how data transfer
is performed.

Brackup: Fixed sized chunking is used, with the exception of MP3-files
which can be chunked based on their contents. Brackup uses mark-sweep for
garbage collection (see section 3.6 on page 33 for details on garbage collection).

5.1.1 Discussion

The point of this overview is not to give a thorough survey of each backup
system. Therefore, the points listed are those that can be determined from
technical documentation, as opposed to reading source code and testing each
system.

This is why we have left out modularity and reliability. To estimate modu-
larity would require a deep understanding of both design and implementation,
whereas assessing reliability would require testing each individual backup
system.

What can be seen from the comparison is that Hindsight is one of 7 systems
that apply global deduplication, and one of 4 that extend this with deletion.
Among the remaining systems is Tarsnap with its proprietary back-end, the
file system S3QL and Brackup which uses mark-sweep garbage collection. We
list Hindsight’s ability to delete in parenthesis due to its immature garbage
collector (see section 3.6 on page 33 and section 4.6 on page 70), however the
design does support the feature.

Further, Hindsight is the only system to support efficient queries against
the file paths in a snapshot. While bup could implement this feature (as we
mentioned earlier), it would be nullified in the worst case. Hindsight does not
suffer from such a worst case scenario.

Not shown in the table is that only SAM, Venti and Hindsight are designed
to support multiple front-ends. However, our prototype does not yet expose a

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 5. EVALUATION 83

simple API. Amongst these backup frameworks, Hindsight is the only one to
support security and deletion.

Hindsight is designed to handle crashes well. In particular our prototype
is able resume after a crash without redoing most of the work done before
the crash. In general, the other backup systems we have looked at do not pay
much attention to system crashes. As a result, they cannot skip files that were
processed as part of an uncompleted snapshot without data inspection.

5.2 Quality

Our prototype does not meet standard quality measures. In the following, we
list some tasks that should at least be completed before the software can be
called stable.

5.2.1 Testing

We would like to test the full code base properly. The prototype is written
in Haskell, which makes the popular and well-tested QuickCheck tool an
obvious choice for verifying functionality.

Currently, we use QuickCheck to test the our concurrent b-tree. Before the
test runs, an empty b-tree is created and its root stored in a mutable MVar. An
iteration of the test consists of:

1. Open the b-tree from the current root.

2. Build an in-memory Map, reflecting the tree.

3. Start a re-balance process, a cache-flush process and a disk-sync process
that periodically saves the tree and updates the root MVar with the
possibly new root.

4. Execute a randomized sequence of operations on both the Map and the
tree.

5. Kill the processes spawned in step 3.

6. Compare the map with the current state of the b-tree. If the items do
not match, the test has failed.

Note that the b-tree is not synced after the iteration. Instead, the next
iteration must use whatever the disk-sync process managed to store before
being killed. Thus the test can check whether the bottom-up sync phase
works.

However, the test does not fully check the b-tree’s concurrency features,
since it needs determinism to be able to verify the result. One way to test
this would be to make another test where the sole purpose is to try to break
the tree, and not to test whether the operations executed have the expected
results.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 5. EVALUATION 84

Processes: The next step in QuickCheck’ing the full functionality of the
prototype could be to check all the processes through their API. This is
possible by checking them one at a time, starting with a process setup of 1

and then extending it. So in order, one could write tests for: a) External on
its own; b) BlobStore using External; c) Index on its own; d) HashStore using
Index and BlobStore; and e) Hindsight’s main API: KeyStore using Index and
HashStore.

These tests would be able to locate mistakes in each individual process.
Unfortunately, we did not have time to write them.

Back-box: Additionally, black-box testing should be used to check the code
base at its highest level of abstraction. An example could be to make a series
of snapshots, delete some, restore the data and verify the result.

We have written a simple black-box test to check Hindsight’s recovery
system. We call it the “die test”. It works in three steps:

1. Start a snapshot operation.

2. Wait N seconds.

3. If the operation has completed: stop; else kill it and go to 1.

This checks whether Hindsight can survive in a hostile environment, where
it is constantly killed and resumed. Here, “killed” means the Linux signal
KILL – also known as signal 9 – that kills a process brutally and without
asking. After the test has finished3 we restore the data and verify it.

See appendix B on page 121 for an example run of this test.

5.2.2 Documentation

We have already released the prototype under GPLv3, and of course a sensible
open source project calls for documentation.

In Haskell, the standard documentation system is Haddock. We have used
this system to document the API of our b-tree, but have not yet come around
to document the API of the processes, and the rest of the system.

The Haddock documentation for the b-tree can be found at

http://hind.sight.dk/doc/Data-BTree-BTree.html

5.3 B-trees

Hindsight’s use of a multi-file structure in the form of b-trees for indices
allows it to retrieve parts of log data as it is needed. This makes inspecting
part of a backed up file structure more efficient by retrieving the needed log
data only.

In section A.3.2 on page 100, we present the results trying partial retrieval
on a snapshot with a million files. The results show retrieval of around 33%

3Which is not guaranteed; for example bup never completes the snapshot.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

http://hind.sight.dk/doc/Data-BTree-BTree.html

CHAPTER 5. EVALUATION 85

of the log data when listing 0.1% of the snapshot and less than 50% when
listing 1% of the snapshot.

When listing the top-level directory non-recursively, some excess transfer
was avoided. The synthetic data set was not particularly fit for prototype’s
listdir command, in that the files were equidistributed. To be effective, the
command must be able to cut away large subdirectories, but no such existed.
We believe this command could be more effective on other data sets.

5.4 Benchmarks

In this section, we evaluate our prototype with respect to space and time
usage and garbage collection.

5.4.1 Space and time usage

In section A.6 on page 110, we present our results of making 10 snapshots
of data collected from one of the author’s home directory and of the Linux
kernel sources respectively. We compare our Hindsight prototype to four
other backup systems: Brackup, bup, Cumulus and Tarsnap.

From our benchmarks we see that our Hindsight prototype is 2-3 times
slower than the competition (except for Brackup). We would expect it to scale
well with lots of data (being based on b-trees) and the tests give some credence
to this claim, in that the prototype does not increase in time usage with each
snapshot. It does however spend twice as long on its 10th snapshot of the
Linux kernel sources, compared to its first.

Another observation is that the prototype looks more reasonable in its
time use, when storing data on S3. This could be because it can do some of its
computations in parallel with network communications.

The prototype performs quite well with respect to local and external space
usage. Excluding Brackup who stores its hash index remotely, our prototype
uses fewer local bytes than any of the tested systems. The data it sends to the
back-end corresponds to that of other gzip based backup systems (Cumulus
stores fewer bytes, but uses a more aggressive compression method).

5.4.2 Deduplicated log data

In appendix A.3 on page 99, we have tested the effect of applying deduplica-
tion on the log data. While it does save some space externally, and thus saves
network transfer, it is likely to also increase the transfer when retrieving back
the data (due to the indices becoming entangled).

The prototype uses the same blob size of 2 MB for backing up user data,
as for log data. This implies a worst case of retrieving 2 MB to unpack one
b-tree node. This worst case could be lowered by either lowering the blob size
for the secondary run, or by putting a limit on the indices considered when
deduplicating.

When retrieving many consecutive key indices, deduplicating yields a
lower data transfer.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 5. EVALUATION 86

5.4.3 Conservative garbage collector

In section A.5 on page 105, we test our conservative garbage collector. The
results show that the collector can provide acceptable performance for small
repositories where only a small percentage of data is rewritten between
snapshots.

Specifically, an overhead of just 10% garbage is present with 32 live snap-
shots and 12% rewrite, which we think could make for a realistic setting
of snapshotting a personal computer. On the other hand, our own home
directory data from section A.6 on page 110 varies a lot more in the amount
of data, and thus counteracts this notion.

Further, this garbage collector is only as efficient as the smallest snapshot
family permits (due to its small Bloom filters). Thus, keeping small snapshot
families in the same repository as large ones will result in a large garbage
overhead.

We have not looked at how much time our garbage collector spends on
analysis, due to its immature implementation.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

Chapter 6

Further work

In this chapter we list some topics for further work.

6.1 Crash safety

The prototype has a recovery routine to bring its log data back to consistency
after a program crash (see section 4.4 on page 66). It works by employing a
number of log files, which is then used to rollback to a valid state.

However, the directories containing the log files are currently not synced.
So even though the prototype syncs the files it creates, they may not have
been registered as part of their parent directory.

This gives us two race conditions:

1. The log file describing the contents of a blob could disappear, and an
unreferenced blob could be left on the back-end as a result. This is
possible because the hash index’ rollback directory is not synced.

2. The log file describing the newly inserted keys could disappear, and
a key referencing a non-existing hash could avoid rollback. This can
happen because the key index’ rollback directory is not synced.

These issues could be solved by adding logic to sync the parent rollback
directories. It’s definitely possible, but the prototype does not yet do this
(there was no obvious way to open a file descriptor for a directory in Haskell
at the time).

We do not believe there is a problem with the way the b-trees write data:
all updated nodes are written and synced in bottom-up order, before removing
anything. Removing deprecated nodes occurs without explicit syncing.

No matter when the directory is synced, it will register some split of this
sequence, and all splits are safe (a program crash would leave an arbitrary
split as well, and this is what the routine was designed for).

6.2 Asymmetric encryption

Instead of the simple security model employed by Hindsight, a more advanced
model could be designed. With asymmetric encryption (also known as public-

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen 87

CHAPTER 6. FURTHER WORK 88

private key encryption), the encryption and decryption processes rely on
different keys: The public key is used for encryption, and the private key is
used for decryption.

Instead of encrypting blobs with a single master key, each one could be
encrypted with a personal key. This key could then be encrypted with a
public key and stored in the hash index, along with the reference to the blob.
It would now be impossible for the client to retrieve any blob data (assuming
it does not have the private key). Only the meta-data is available to it.

If we then repeat this change at the secondary level, and thus employ
another secondary public-private key-pair, we get the following situation:

Snapshot and seal require both public keys, but no private keys. Hindsight
does not retrieve information from the back-end during a snapshot; all
the needed log data is already local.

Checkout requires both private keys. One for retrieving log data and one for
retrieving file data.

Search and recover require just the secondary private key to access the log
data.

GC requires all the keys, since it needs to scan log data and rewrite blobs.
Without blob rewriting, it would only need the secondary key-pair.

The cryptographic library used by the Hindsight prototype, NaCl [19],
supports asymmetric encryption with its crypto_box API.

6.3 Indices

Here we discuss further work related to our hash and key indices. For a
discussion of the b-tree implementation, see section 6.5 on page 90.

6.3.1 Merkle trees

As mentioned in section 3.11 on page 53, Hindsight currently stores all hashes
used by an entry in the key index as a list. This leads to a scalability issue,
when backing up large files.

This problem could be solved using Merkle trees [64] (also known as hash
trees). A Merkle tree is a binary tree, where each branch node contains a hash
of its children’s values. The value of a leaf node is the hash of the data block
it represents (the sequence of leaf nodes correspond to the list of hashes the
prototype maintains now).

Thus, the root node is sufficient to safely verify the data contents of all the
leaf nodes put together, and we could identify the contents of an entry in the
key index (the contents of a saved file) by the root of a Merkle tree (a single
hash). To make this change we would have to:

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 6. FURTHER WORK 89

1. Extend the hash index to allow for hashes that reference other hashes
along with the current hashes that reference blobs. Thus, we can model
a tree inside the hash index1.

2. An entry in the key index now needs to reference just a single hash, that
is the root of the Merkle tree that describes its contents.

This would make the hash index slightly larger – by adding the Merkle
tree branch nodes – and the key index a lot smaller. This will give a lower
space usage by eliminating some of the current redundancy from storing all
hashes in both the hash index and in at least one key index.

Of course, this will introduce more lookups and inserts in the hash index
per file backed up. Now, both the data hashes and the tree structure need
insertion if not present. On the other hand, it can be used to efficiently identify
known parts of a file. Szydlo [89] investigate methods for efficient traversal of
Merkle trees.

6.3.2 Hash Index

In the prototype, the hash index is implemented using our concurrent b-tree.
But unlike the key index, it does not need efficient range queries or lazy
retrieval from the back-end (the hash index is always stored locally). Thus it
could use a completely different data structure, such as an external hash table
or a fractal b-tree, as long as it would provide the same level of deduplication
as the b-tree.

It could be interesting to try other data structures and see how they affect
performance, both in terms of time usage and local space usage.

6.4 Garbage Collection

We have only implemented a conservative garbage collector in the prototype.
It would be interesting to implement and experiment with a classic mark-
sweep garbage collector as well as a garbage collector based on reference
lists.

The prototype clearly distinguishes between the mark phase and the sweep-
compact phase, so other collectors can implement their own mark phase and
reuse the existing sweep-compact phase.

For example, the classic mark-sweep garbage collector needs only to
retrieve each key index and mark the hashes used. When this is done, it can
run the existing sweep-compact implementation. Likewise, a garbage collector
based on reference lists needs only to maintain the references and mark the
dead hashes.

1The approach is similar to the one used by Git where a tree object can reference either blob
objects or other tree objects.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 6. FURTHER WORK 90

6.5 B-trees

As mentioned in section 4.3.6 on page 63, the re-balancing logic used is
incomplete, and some of the API is either partially broken or unsafe. Apart
from finishing this work, we have other ideas for what could be interesting to
investigate, which we present in this section.

6.5.1 Summary vector

As discussed in section 3.5 on page 28, expensive hash index lookups can be
avoided by maintaining an in-memory summary vector (implemented by a
Bloom filter) of the hashes.

In an earlier implementation of our prototype every hash resulted in an
index modification, which is why we didn’t implement summary vectors.
However, this limitation is not present in the current version, and so summary
vectors can be implemented. A summary vector is used to identify hashes
which are not in the index. In that case, the hash can be inserted in the memory
cache of to-be-inserted hashes. The result is a halving of index accesses.

Zhu et al. [96] note that throughput can be increased using Bloom filters as
summary vectors, and that the Venti backup system achieves a 16% increase
in performance in this way. Another system which uses summary vectors is
bup [72].

6.5.2 Types and performance

We conjecture that our current b-tree implementation could be a lot faster and
that it is using a lot more memory than needed.

The current b-tree accepts arbitrary Haskell types as keys and values, as
long as instances for the needed Haskell type classes are available. This is
sufficient to build the tree and write its nodes to disk. While it provides for a
very flexible b-tree that will accept any type with little work, it results in a lot
of overhead.

First, serialisation is expensive. In the current b-tree, serialisation is done
on a per-node basis. To lookup the value of a key, the nodes on the path
through the tree are deserialised along with all of the keys and values in
the sought-after leaf. As a result, many values are deserialised, just to be
discarded.

This could be avoided if keys and values were forced to be of the Bytestring
type. Keys and values are now already of a serialised type which allows nodes
to always remain as Bytestrings. Thus they could be written directly to disk
when needed.

Of course, this makes searching for values inside nodes trickier, which
is why the implementation uses Haskell data structures: It was easier to get
working.

Which leads us to the second part: The data structures used in the b-tree
has a significant memory overhead. A leaf in the b-tree is implemented as
a map that points keys to values. An entry in the map takes up 6 machine
words in which it stores: a pointer to the data constructor (Bin), the size of

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 6. FURTHER WORK 91

the sub-tree, a pointer to the key and one to the value, a pointer to the left
sub-tree and one to the right.

Furthermore, keys we use are Bytestrings which come with another 5

words of overhead (Data constructor, ForeignPtr [two words], length and
offset). In the case of the hash index, the values are pairs of Word64 with no
pointer overhead.

In the key index, the keys are also Bytestrings, but the values consist of
another two Bytestrings (version and meta-data) as well as a list of bytestrings
(the chunk hashes). A list element comes with an overhead of 3 words, while
each of the Bytestrings has an overhead of 5.

With these observations, we estimate the memory overhead of the b-trees
on 64-bit architecture:

Branch entry Leaf entry
Hash index 88 B (550− 978%) 88 B (157%)
Key index 88 B (100− 978%) 176 + 64c B (200%)

Estimating the overhead percentage of branch entries is a bit difficult, since
the data stored depends on how short a prefix was picked when splitting the
nodes in the sub-trees. In the hash index, a prefix of length 8 (fairly long)
gives 550% while prefix of one char gives the worst case of 978%. In the key
index, the branch prefixes are expected to be longer (file paths are longer than
hashes), though the worst case remains the same.

We are under the impression that a significant speedup could be gained
by exploiting that keys and values are Bytestrings, and the shown memory
overhead could be eliminated completely.

6.5.3 Inter-node deduplication

Assume that we have changed keys to Bytestrings, as proposed in the last
section. We can now eliminate redundancy in the keys, by removing common
prefixes. A simple way to do this, is to allow each node to reference back to
the parent node, to reuse prefixes from it.

The PostgreSQL developers have discussed a similar feature [75] and the
Oracle database already employs a similar scheme for their key-compressed
index [7].

Example leaf with four keys, surrounded by its two parent routing keys (p
is parent and l is leaf):

p: /home/alice/code
l: /home/alice/code/data/tree.hs
l: /home/alice/code/algo/mergesort.hs
l: /home/alice/docs/wishlist.csv
l: /home/alice/work/theboss.dat
p: /home/alice/work

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 6. FURTHER WORK 92

Now, the leaf key can reference the parent routing keys. The three tags
are L for prefixing the left routing key (first line in the listing), 0 for no extra
prefix and R for prefixing the right routing key (last line in the listing):

p: /home/alice/code
l: L/data/tree.hs
l: L/algo/mergesort.hs
l: 0/home/alice/wishlist.csv
l: R/theboss.dat
p: /home/alice/work

Here, the two first keys and the last key in the leaf can strip a long prefix,
by referencing the routing key from their parent. One value cannot use any of
the prefixes in their full form, and is instead written as is. An improvement
could be to allow a key to reference only part of the prefix.

In practice, the leaf boundaries will not match folders so well. We used a
folder boundary here for readability.

We are not yet certain that this approach is compatible with safe re-
balancing in the concurrent b-tree used by the prototype. This needs further
study.

6.5.4 Order preserving compression

As another means for lessening the b-tree’s space usage, the keys could be
compressed with an order preserving compression method. See Binnig et al.
[22] for a discussion of the advantages of such methods in the context of
database systems.

Order preserving compression could be used the compress the keys of
the b-tree, while still allowing operations such as lookup and insert to run
without decompressing the keys.

Compression would only be beneficial in the key index, since the hash
index’s keys are pseudo-random. However, compressing the file paths in the
key index could lead to a significant gain in performance from lower memory
usage and comparison of shorter elements.

6.5.5 Hackage package

As with Hindsight itself, we would like to release the b-tree implementation
as its own independent package on Hackage (the Haskell package system).

This would allow other developers to use the b-tree in their own projects,
and to help improve it (e.g. by implementing some of the suggestions we have
presented in the prior sections).

6.6 Alternative Front-ends

It could be interesting to look at other types of front-ends to use with the
Hindsight API. So far, we have presented a front-end for backing up POSIX
file systems and a front-end for mounting a snapshot for inspection through
FUSE.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 6. FURTHER WORK 93

6.6.1 Inspection

To extend on the ability to mount a snapshot, a feature for cycling through
the history of a specific file or folder could be made. Thus giving an interface
with features inspired by Apple’s Time Machine.

This kind of inspection could benefit from the deduplication Hindsight
applies to log data, for more efficient transitions from one snapshot to the
next or previous one.

6.6.2 Snapshotting

We have ideas for a couple of alternative snapshotters:

Data inspection: A front-end can pick and choose which data to back up,
which allows for different rules for different kinds of data. For example, a
front-end for a database could open the tables and insert each row as a key in
the snapshot; or a front-end could open a virtual machine image and insert
each file individually.

Of course, it would be more efficient to read the data contiguously and for
example insert the virtual machine image as one entry, however opening the
image for inspection gives flexibility.

Log rotation: Another front-end for snapshotting could be a service for log
rotation. It accepts messages that are added to the log, and periodically
rotates the log, by archiving the current log and starting over with a fresh one.
This process could use Hindsight’s head as its current log. When a message
arrives, it is added to head with some unique key. When the log is rotated,
the snapshot is committed and the head is cleared. Thus, entries of the log
are preserved securely as snapshots.

File monitoring: Another useful fron-end is a file monitoring service that
monitors the file system and processes changed files real-time. When a file is
changed, it is inserted into a queue. Workers pick files from the queue and
adds them to Hindsight’s head. Periodically, the workers are paused, and the
head is archived as a snapshot. This operation should be quick, since all file
processing has already occurred. The daemon could exploit kernel services
such as the Linux inotify API or the Windows FileSystemWatcher API.

6.7 Alternative back-ends

In this project, we have focused mainly on an untrusted back-end. If we
introduce a trusted back-end – or perhaps a trusted back-end proxy – that sits
in front of an untrusted back-end, we could move some logic to this entity.

In the following, we consider a scenario with a client and two back-end
parties P and B, trusted and untrusted respectively. The design discussed
earlier contained only one untrusted back-end, which is the same as running
P at the client.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 6. FURTHER WORK 94

Everything at P: We could move the entire Hindsight API to P and do
backups through a hosted service. P could then use B for storage of protected
blobs. This would move all backup logic to P. While we could still query
P to ask whether a file has changed, once such change occurs we would
have to resend the entire file, since P is responsible for file chunking and
deduplication.

Local chunking: If instead we move file chunking to the client, along with a
hash index to identify known chunks, we could send only new chunks to P.
We could still have P take care of snapshots, chunk references and garbage
collection. Note that since the hash index is not used for garbage collection, it
is allowed to drop hashes, even though a key index needs them. We could
just ask P for the hash. In this setting, the hash index works like a cache.

We could protect the chunks with convergent encryption, to hide them
from P, but we would still disclose meta-data and file paths.

This could be achieved by extending the Hindsight API to allow insertion
of keys in the head by inserting their hashes instead of the actual contents.
Additionally, it must be possible to add hashes to the key store.

Local snapshots: Let us extend the client a bit more, and keep snapshot
maintenance and key indices local. We now know locally which files each
snapshot consists of, their meta-data and what their content hashes should
match. Depending on whether we keep all hashes ever seen in the hash index,
or put a limit on its size, we can perform full or partial, global deduplication
locally. P can extend this with universal deduplication, across all users that go
through P. Some of which can occur either online (we can still ask P, whether
the chunk hash is known), offline after the fact or with any mix of these.

Combined with convergent encryption, P need not be fully trusted. P
would no longer be able to read the chunks, the meta-data or the file paths.
All P gets are the encrypted chunks, and unless P knows the contents of the
chunk, it cannot decrypt it.

The key indices can be stored at B without going through P, with the
approach described in our “single back-end” design. This means they are
fully protected with encryption and authentication and can thus be used to
verify the file data when received from P, by comparing its hashes with the
key indices.

In the prototype, this could be done by running local KeyStore and
HashStore processes. The latter in a modified version that does not use
a BlobStore, for storing chunks, but instead speaks directly to an External
process. This process protects the blobs with convergent encryption and
transmits them to P.

6.8 Encoding format

In this section, we briefly discuss further work regarding the encoding format
the Hindsight software uses to serialise its structures.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

CHAPTER 6. FURTHER WORK 95

6.8.1 Backwards compatibility

Hindsight relies on two data structures which are stored on the back-end:
b-trees and blobs. If at some point, one of these structures are replaced, or
their encoding is changed, it would be beneficial if the implementation could
migrate old data to the new structure or format.

This could be achieved by adding a version to all stored files, indicating
its type, serialisation format and encoding (e.g. compression and encryption).

6.8.2 Transparency

To increase transparency, we would like to write a technical report document-
ing the bits and bytes of the encoding format used. This would allow anyone
to understand the format used by Hindsight and a user could inspect the data
stored on the back-end herself.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

Chapter 7

Conclusion

During this master’s project we have designed and implemented a full featured
backup system in Haskell. We started out with a small core idea, and has
since developed that idea into the prototype and design described within this
report.

We do not yet consider our system mature, but on some points it fares
rather well. Specifically, it uses fewer local bytes than any of the other similarly
featured system we have encountered.

The landscape of backup systems is a diverse one. On some points we
mimic what is already known and on some points we explore new ground.
Specifically we’ve investigated conservative garbage collection and lazy log
data retrieval (using b-trees). Furthermore we perform log data deduplication
elegantly by running the system recursively.

So what have we learned from this? Lazy log data retrieval is a very usable
feature, and our prototype wouldn’t be the same without it. Conservative
garbage collection is an interesting idea. We implemented it because we were
curious and it seems no one else have done it. So does it work? The answer to
that question is a definite “maybe”; there are certainly usage patterns which
fit the garbage collector well, but there are also some that utterly breaks it.

While log data deduplication does decrease the amount of transferred log
data when taking a snapshot, it can increase the transfer during inspection. On
one hand, it may decrease data transfer when inspecting multiple consecutive
snapshots, and one the other hand it may increase it when inspecting a single
or few snapshots due to their log data being entangled with one another.

We are hesitant to conclude on whether our idea for log data deduplication
is a good compromise or not. We think that it would be a shame if we are
forced to abandon this idea, in favor of a deduplication method which relies
on the semantics of the log data (i.e., knows about the filesystem).

Though not directly visible in this report, a significant amount of time was
spent improving our skills in system design and Haskell programming. The
prototype is clear evidence of our progress.

We enjoyed it.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen 96

A Benchmarks

A.1 B-tree compared to SQLite3

Table A.1 shows the results of a time and space comparison of our b-tree and
an SQLite3 database when inserting 200,000 keys.

Time usage Space usage
Our b-tree: 24.4s, 497 KB
SQLite3: 16.9s, 2,413 KB

Table A.1: Comparison between our b-tree and a SQLite3 database when
inserting 200,000 keys-value pairs

We see that our b-tree is 44% slower than the SQLite database, but that it
uses just 20% of the space (mainly due to compression of the tree nodes). The
SQLite database maintains a b-tree index over the key values just as we do,
but does so more efficiently through optimised c-code and efficient IO.

We find it likely, that our b-tree can at least match a SQLite database in
performance after fixing the serialisation problems discussed in section 6.5 on
page 90.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen 97

APPENDIX A. BENCHMARKS 98

A.2 Writing log files in bulk

Figure A.1 shows the time used to take a snapshot of a few files with various
configurations of keys per log file. The number of keys per log file is doubled
for each run. Many keys per log file gives less precise recovery, while fewer is
less efficient and take up more space.

As guessed, writing just one key per log file and syncing it is very slow.
At 23 keys things looks more reasonable and the saved time hereafter is low.
But there is another trade off in play here: Every log file allocates a disk block
which is usually 4096 bytes, and thus a lot of space may be unnecessarily
allocated if each log file is small.

Assuming an average path length of 100 (which is probably a bit pes-
simistic), we can fit 40 keys in a single block. In this scenario, 8 keys per log
file would only utilise around 20% the disk blocks.

This is the reasoning behind our choice of 27 = 128 keys per log file.
Though somewhat arbitrary, we guess that this is a good trade off between
utilising disk blocks and enabling efficient recovery.

 0s

 20s

 40s

 60s

 80s

100s

120s

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2
10

T
im

e

Keys per write

Figure A.1: Writing many file paths in bulk improves performance.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 99

A.3 A million files

Using the tool genbackupdata we created a million small files, each containing
20 random bytes. Then we took a snapshot with the Hindsight prototype.
It took about 45 minutes. The test data was generated with the following
command:

genbackupdata --seed=0 --file-size=20 --create=20000000 testdir

files 1,000,000
directories 7,876
unique files 19,614
file size 20 B
file path lengths 26,27,28

Hindsight log data 48.5 MB
Key index 44.0 MB
Hash index 0.8 MB
External space usage 44.8 MB

Table A.2: Test with a million files.

Table A.2 lists some statistics of the data in the snapshot. Only around
19,000 of the files had unique contents. This is due to the genbackupdata
program that apparently uses a biased method to generate the “random”
contents of the files (its man page does not mention this). A fair pseudo
random number generator does not yield collisions on a million samples of
20 bytes.

In any case, this explains the very small hash index, which only contains
19,614 hashes (one per unique file). This tells us that the hash index is using
around 41 bytes per entry. An entry consists of a hash of 32 bytes and a blob
ID of 24 bytes, 56 bytes in total. Since the files are so small, only 47 blobs were
generated during the snapshot, which implies many repeated blob ID’s in the
hash index, and thus a lot of redundancy for the compression to eliminate.

We can use this to reason about the hash index size, if all files had been
unique. This would have given 1 million entries, and thus would likely have
taken about 41 MB. Thus giving a total amount of log data of around 90 MB,
about twice as much as now.

The key index contains 1,007,876 entries, one for each file and directory.
Thus, it uses around 45 bytes per entry. Since many of the files contain the
same contents, the same content hashes will be repeated in the index, which
leads to a higher compression ratio. Due to the short time span of generating
the files, a lot of files contains the same meta (time stamps etc.), which leads
to even more redundancy that the compression can eliminate. The file paths
are well suited for compression too.

All in all, compression is very effective on this log data. But even then,
the log data is 48 MB while the original data is just 81 MB. Because the files
contain so little data, their key index entries take up a lot of space compared

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 100

to the original files. However, the data blocks used to store the data takes up
3.9 GB and compared to this, the log data is just 1.2%. If all files had been
unique, this would likely have been around 2.5%.

This is higher than our goal of 1%, however this is a synthetic test that
does not resemble regular use (it is unrealistic that a filesystem should not
include at least some larger files).

We feel that 2.5% would be an acceptable result for this data (assuming
that our extrapolation is accurate).

A.3.1 Log data deduplication

To test the effect of data deduplication, we made 5 snapshots of the million
files from the previous section: a) an initial snapshot; b) a snapshot where a
selection of around 11.5% semi-ordered files were updated (115,591 files)1;
c) a snapshot where the first2 11.5% ordered files were updated; and d) two
snapshots where a random selection of 5% and 1% percent of the files were
updated respectively.

Table A.3 on the following page, shows the amount of log data retrieved
when listing the files of each snapshot by itself, and when listing it after listing
the one just before it (2 after 1 and 3 after 2). In the latter case, the blobs
referenced by the key index of the previous snapshot are cached.

The first snapshot retrieves its own key index only, which is 44.5 MB. The
second snapshot’s log data has been deduplicated and is thus entangled with
that of the first snapshot. Listing it on its own retrieves 79 MB, which is a lot
more than the key index it extracts (80% overhead). The same effect shows
when listing the third snapshot, where 107 MB are retrieved to unpack a 44
MB key index (143% overhead).

This is the down side of deduplication: it fragments the data – breaking
chunk locality in the stored blobs – which results in retrieval of irrelevant data
blocks.

On the other hand, the second and third snapshots have only contributed
with 35 and 28 MB log data respectively. That is 72.3% of their key indices,
or a saving of 27.7%. The second key index by itself has a saving of 35.6%.
However, when we start to introduce random changes, the percentage of saved
space usage drops to almost zero.

A.3.2 Lazy log data retrieval

Table A.4 on the next page and Table A.5 on the following page, show the
amount of log data retrieved when listing a directory with 129 and 16,513
files respectively. As can be seen, deduplication leads to less data retrieval
when the previous key indices are already present, but more if not due to
entanglement. Additionally, listing fewer paths leads to less retrieval.

1The number of files was chosen as around 10%, and as something that fit the structure
generated by the genbackupdata tool. It corresponds to the files of 7 directories.

2Following the order of the key index’ b-tree.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 101

Table A.6, shows the amount of log data retrieved when listing the top-
level directory non-recursively (using the prototype’s listdir command). In
the first listing, it seems the full key index is retrieved. Hereafter, it seems that
the b-tree is able to cut away irrelevant sub-trees when listing without cache,
and that deduplication can improve on this result.

Snapshot Key index By itself With the previous
1 44.0 MB 44.5 MB –
2 43.9 MB 79.1 MB 35.2 MB
3 43.8 MB 106.6 MB 28.2 MB
4 44.6 MB 59.7 MB 45.0 MB
5 44.8 MB 94.5 MB 42.0 MB

Table A.3: Data retrieved during five full snapshot listings.

Snapshot By itself With the previous
1 13.1 MB –
2 14.2 MB 12.1 MB
3 15.2 MB 6.9 MB
4 13.6 MB 11.5 MB
5 14.3 MB 10.1 MB

Table A.4: Data retrieved during five snapshot listings of the directory path
0/32/64 containing 129 paths.

Snapshot By itself With the previous
1 21.5 MB –
2 26.8 MB 14.2 MB
3 38.3 MB 15.3 MB
4 17.8 MB 15.7 MB
5 24.8 MB 14.3 MB

Table A.5: Data retrieved during five snapshot listings of the directory path
0/32 containing 16,513 paths.

Snapshot By itself With the previous
1 44.3 MB –
2 56.1 MB 35.2 MB
3 68.6 MB 26.7 MB
4 45.0 MB 42.9 MB
5 58.7 MB 42.0 MB

Table A.6: Data retrieved during five non-recursive snapshot listings of the
top level directory path 0 containing 62 paths.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 102

A.4 Bit-vector encoded reference lists

In section 3.6.5 on page 40 we discussed garbage collection using reference
lists, where the set of snapshots referencing a fingerprint is saved along with
it. If snapshots are given numbers 1 . . . then a fingerprint’s set of referencing
snapshots can be saved as a bit-vector where a 1 in position n signals that
snapshot n references the fingerprint. In order to avoid updating every list
when a snapshot is added, the bit-vectors are interpreted as ending in an
implicit infinite stream of zeros. Note however, that the bit-vectors would still
have to be updated whenever the order of snapshots changes (e.g. when a
snapshot is deleted).

In this test we show the effect of concatenating several vectors together
and LZMA compressing them.

We have prepended a 2-byte size field to each bit-vector, but we think that
an arbitrary precision encoding (á la Git’s object size fields) should be used
in an implementation. With such encoding, a single byte to indicate length
would be sufficient for a reference set of several hundred snapshots, which
we think includes most use cases.

The bit-vectors were synthesized using the following algorithm, parame-
terised by α, β and N.

Start by setting bit b = 0, and vector v = []. Repeat these steps N times:

1. Append b to v.

2. Draw two numbers x and y from the uniform distribution over [0;1).

3. Flip3 b if y < α.

4. Flip the last bit of v if x < β.

The rationale behind the algorithm is this:

1. Chunks are long lived, that is if a snapshot introduces a chunk then the
next snapshot will probably also use that chunk. The lower the value of
α, the longer the lifetime of chunks.

2. Most snapshots will have a small amount of data that is unique to them
(e.g., temporary files, log files, etc.). The β controls the amount of “noise”
in the synthesized vectors.

We have included trailing zeros, even though they are redundant4. For
this test we have used values N = 1000, α = 0.1% and β varying from 0.0% to
0.5% (shown in the legend).

Thus, the expected number of noise-bits is 0, ...,5, and b is expected to flip
once [23]. But since we disregard vectors which are all zeros, the number

3So 1 becomes 0 and 0 becomes 1.
4Because of the implicit infinite stream of trailing zeros.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 103

of flips has a skew towards higher numbers (judging from the synthesised
vectors the mean seems to be around 2).

In figure A.2 on the next page we show the effectiveness of LZMA compres-
sion as a function of the number of vectors concatenated together. Notice that
the number of vectors is dictated by the order of the b-trees (see section 4.3.6
on page 63). The b-tree order used in the prototype is 128, so between 128 and
256 vectors can be concatenated. With noise ratios between 0.0% and 0.5%
this yields a ∼ 90% compression or better.

In other words there is an overhead of around 0.1 bit per snapshot plus 8
bits for the size field in most cases.

Comparing this with 32 bits used for reference counting, we think that
it is plausible to use reference lists, and the possibility should at least be
investigated.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 104

100%

 90%

 80%

 70%

 60%

20 21 22 23 24 25 26 27 28 29 210

C
o

m
p

re
ss

io
n

Order

0.0%
0.1%
0.2%
0.3%
0.4%
0.5%

Figure A.2: Effectiveness of LZMA compressing bit-vectors as a function of
vectors concatenated together. The graphs represent different
amounts of noise.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 105

A.5 Conservative garbage collection

In this section, we investigate the effectiveness of our prototype’s conservative
garbage collector (see section 3.6.6 on page 40 for details).

In the test we vary the amount w of snapshots and changed data ∆ between
each snapshot. To limit noise, we have emulated a perfect compacting garbage
collector by adjusting the blob size, such that each blob contains exactly one
chunk, thus the results are not skewed by the effectiveness of blob rewriting.

We have synthesised a range of data sets using this algorithm:

• Generate C random files each of size B. These constitute data set 1.

• To get data set n + 1, copy every file from data set n, except the C∆
oldest which are replaced by new randomly generated files of size B.

It is clear that each data set has the same size (CB) and consists of the
same amount of files (C). We have named the files 0, 1, . . . , w− 1 in these
benchmarks. For these tests we have used values C = 2048 and B = 4096.

In each test we start by taking w snapshots of data sets 1, . . . ,w. Then
we proceed by repeatedly taking a snapshot of the next data set, deleting
the oldest snapshot, and running the garbage collector. Finally we delete all
snapshots, oldest to newest.

A graph of the amount of unique data backed up will start off by increasing
rapidly for w snapshots, then stay flat while data is being replaced, and then
finally rapidly decrease and end in zero. The three phases are: a) introduction
of data (increasing); b) modification (flat); and c) deletion (decreasing).

Varying ∆ will scale the graph along the y-axis but not change its shape.
In this test we scale all graphs by the size of the backed up data (including
log data) after w snapshots. Deviations from the shape just described repre-
sent sub-optimality of the garbage collector. Because of fluctuations in the
deduplication of log data, the graphs can sometimes go below their value at
w, especially when ∆ is small (which means log data is responsible for a large
part of the backed up data).

We have run the test for four values of w: 32, 64, 128 and 256. The results
are shown on the following pages in figure A.3, A.4, A.5 and A.6, respectively.

Picking an acceptable overhead of ∼ 10% we obtain these upper bounds
for the rewrite percentage ∆ as a function of the amount of live snapshots w:

Live snapshots (w) Rewrite percentage (∆)
32 ∼ 12%
64 ∼ 6%

128 ∼ 3%
256 ∼ 1.5%

We think that there are many use cases, in which these values makes for a
practical system.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 106

-30%

-20%

-10%

 0%

 10%

 20%

0 50 100 150 200 250

O
v

er
h

ea
d

Snapshots

13.7%
13.3%
12.9%
12.5%
12.1%
11.7%
11.3%
10.9%
10.5%
10.2%
9.8%
9.4%
9.0%
8.6%
8.2%
7.8%
7.4%
7.0%
6.6%
6.2%
5.9%
5.5%
5.1%
4.7%
4.3%
3.9%
3.5%
3.1%

Figure A.3: Conservative garbage collection with 32 live snapshots.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 107

-30%

-20%

-10%

 0%

 10%

 20%

 30%

0 100 200 300 400 500

O
v

er
h

ea
d

Snapshots

9.0%
8.6%
8.2%
7.8%
7.4%
7.0%
6.6%
6.2%
5.9%
5.5%
5.1%
4.7%
4.3%
3.9%
3.5%
3.1%

Figure A.4: Conservative garbage collection with 64 live snapshots.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 108

-20%

 0%

 20%

 40%

 60%

 80%

0 100 200 300 400 500 600

O
v

er
h

ea
d

Snapshots

9.0%
8.6%
8.2%
7.8%
7.4%
7.0%
6.6%
6.2%
5.9%
5.5%
5.1%
4.7%
4.3%
3.9%
3.5%
3.1%
2.7%
2.3%
2.0%
1.6%

Figure A.5: Conservative garbage collection with 128 live snapshots.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 109

 0%

 50%

100%

150%

200%

250%

0 500 1000 1500 2000

O
v

er
h

ea
d

Snapshots

6.2%
5.9%
5.5%
5.1%
4.7%
4.3%
3.9%
3.5%
3.1%
2.7%
2.3%
2.0%
1.6%
1.2%

Figure A.6: Figure

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 110

A.6 Test on real data

To test the Hindsight prototype on some real data, we have made 10 snapshots
of a) an authentic home directory (one of the author’s) spanning a 2 months
period; and b) the Linux kernel source code.

Since the home directory contains private information we cannot disclose
it and instead present statistics describing its contents.

Figure A.7 on the following page shows a histogram of the files in the
home directory (averaged over all snapshots), categorised by size. As reported
by Meyer and Bolosky [65], most files are small, however large files contribute
with most bytes.

Table A.7 lists the snapshots along with their number of files, directories,
soft links and accumulated size. As shown, the snapshots vary between
12.9GB and 70GB.

Table A.8 presents the same statistics but for the Linux kernel sources.

Snapshot date Files Directories Links Size
9th Feb 138,373 17,167 111 12.9 GB
7th Mar 178,626 17,812 124 39.2 GB
8th Mar 183,596 18,049 125 39.5 GB
9th Mar 197,268 21,169 126 40.6 GB
13th Mar 201,800 21,272 129 41.1 GB
16th Mar 188,556 21,372 121 70.0 GB
20th Mar 153,592 21,458 123 68.8 GB
7th Apr 123,414 21,455 122 13.8 GB
8th Apr 123,754 21,414 121 13.9 GB
9th Apr 183,593 29,842 137 42.8 GB

Table A.7: Files, directories and links of the home directory snapshots.

Kernel version Files Directories Links Size
2.6.27.62 24,363 1,524 0 280,8 MB
2.6.32.59 30,489 1,878 1 366,0 MB
2.6.33.20 31,568 1,942 1 377,9 MB
2.6.34.11 32,299 1,982 1 387,1 MB
2.6.35.13 33,314 2,028 1 394,7 MB
3.0.27 36,788 2,265 1 431,0 MB
3.1.10 37,083 2,285 1 434,2 MB
3.2.14 37,619 2,345 1 440,4 MB
3.3.1 38,082 2,366 1 445,2 MB
3.4-rc2 38,560 2,389 1 451,3 MB

Table A.8: Files, directories and links of the Linux kernel sources.

In the following, we compare the Hindsight prototype’s performance
against the following backup systems: Brackup, bup, Cumulus and Tarsnap.
Where relevant, we add rsnapshot and cp for reference.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 111

We did not manage to run Cumulus on the home directory data, since we
could not install it on the server hosting the data.

 0GB

 2.77GB

 5.55GB

 8.32GB

11.09GB

13.87GB

C
o

m
b

in
e
d

 s
iz

e

 0

 5694

11387

17081

22775

28468

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

2
29

2
30

2
31

2
32

2
33

F
il

e
s

Bucket

Files

Combined size

Figure A.7: Number of files and their accumulated sizes, power-of-two buck-
ets. The buckets express upper limits; e.g, the 218 bucket shows the
number of files between 217 and 218− 1 bytes, and their combined
size.

A.6.1 Linux kernel sources

Time usage. Figure A.8 on page 113 shows the time usage of the systems
when snapshotting the Linux kernel sources. Our prototype does not do
particularly well here, ending up slower than Tarsnap which stores data on
the Amazon S3 cloud storage. The fastest is bup, with speeds comparable to
cp. At its worst, our prototype is 3 times slower than bup (the fastest). The

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 112

time usage of Brackup is omitted because it is going off scale (between 16 and
31 minutes).

Time usage when storing via network. Figure A.9 on page 114 shows the
Hindsight prototype versus Tarsnap when using Amazon S3 cloud store [85]
as the back-end. The network link used was tested to perform around 98
Mb/s download and 58 Mb/s upload just before the benchmarks. Here, our
prototype performs closely to Tarsnap, the two being just 17 seconds apart at
the widest.

But the prototype is cheating and is exploiting two cores, where Tarsnap
is only using one. This gives it an advantage of at most a factor of 2 (we are
measuring wall clock time to include network and disk usage).

Another advantage is that our prototype can perform computations in
parallel with network transfer. In the last snapshot, our prototype spends 126
seconds in the CPU, with a wall clock time of 111 seconds. Tarsnap, on the
other hand, spends just 58 seconds in the CPU, during a total of 93 seconds.

It would be interesting to see how our prototype would perform, if its com-
putations were more efficient, and how much it could gain from performing
computations in parallel with network communications.

Note that this benchmark cannot be compared to the other Hindsight
benchmarks, as they ran on different systems (one was chosen for its high
availability and the other for its Internet connection).

Local space usage. The prototype looks better when comparing space usage
of local log data. Figure A.10 on page 115 shows the amount of log data used
by the backup systems, and here our prototype is on par with Tarsnap and
beaten only in the first snapshots and by Brackup which stores its hash index
remotely. When using fixed size blocks, the prototype is consistently lower
than Tarsnap, while it is higher with content-aware chunks (rsync-based). This
is due to the latter yielding more chunks and thus more hashes to store in the
hash index. In this test, the Hindsight prototype seems to follow Tarsnap’s
development.

Remote space usage. Figure A.11 on page 116 shows the remote space
usage of each backup system. Cumulus stores the fewest bytes, which is likely
contributed to its use of the aggressive bzip2 compression scheme, where
the other backup systems that apply compression (including our prototype)
use gzip. The prototype does a bit better than bup and Tarsnap in this test,
however all of them are quite close. The prototype configured to use content-
aware chunks performs only slightly better than the one using fixed sized
chunks. Brackup is clearly falling behind, which is likely due to its lack of
compression.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 113

 20s

 40s

 60s

 80s

100s

120s

140s

1 2 3 4 5 6 7 8 9 10

T
im

e

Snapshot

Hindsight (gzip, fixed)
bup

Tarsnap
rsnapshot
Cumulus

cp

Figure A.8: Time usage during 10 snapshots of the Linux kernel sources.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 114

 80s

 90s

100s

110s

120s

1 2 3 4 5 6 7 8 9 10

T
im

e

Snapshot

Hindsight (gzip, fixed)
Tarsnap

Figure A.9: Time usage during 10 snapshots of the Linux kernel sources.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 115

 0MB

10MB

20MB

30MB

40MB

50MB

1 2 3 4 5 6 7 8 9 10

S
p

ac
e

Snapshot

Hindsight (fixed)
Hindsight (rsync)

bup
Tarsnap
Brackup

Cumulus

Figure A.10: Local space usage during 10 snapshots of the Linux kernel
sources.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 116

 0GB

0.2GB

0.4GB

0.6GB

0.8GB

 1GB

1.2GB

1.4GB

1 2 3 4 5 6 7 8 9 10

S
p

ac
e

Snapshot

Hindsight (gzip, fixed)
Hindsight (gzip, rsync)

bup
Tarsnap
Brackup

Cumulus

Figure A.11: Remote space usage during 10 snapshots of the Linux kernel
sources.

A.6.2 Home directory data

We do not compare time usage spent on the home directory data, since we
were not able to measure the timings reliably (the tests ran on two systems
differing in hardware and setup).

Local space usage. Figure A.12 on page 118 shows the local log data used
by the backup systems when making snapshots of the home directory data.
Brackup leads, by storing its hash index remotely, but our prototype is the
second best, and seems to win in the long run by only storing a single local key
index, and thus avoiding the linear increase in space usage. Tarsnap quickly
uses around twice as much local space than our prototype, which we believe

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 117

could be caused by less efficient compression. The prototype configured to use
content-aware chunks is once again using more local space due to maintaining
more chunk hashes. Worst is bup which keeps every key index local.

Remote space usage. When it comes to remote usage, every system seems
to follow the same pattern. Tarsnap, bup and our prototype are lowest due to
compression, followed by Brackup and rsnapshot (both storing uncompressed
data). We guess that Cumulus would have performed even better in this test,
had it been included, since it uses the aggressive bzip2 compression method
(as opposed to the faster gzip).

The Hindsight prototype. Finally, we compare our prototype in its various
configurations. Figure A.14 on page 120 shows the remote space usage of
the Hindsight prototype, when using fixed sized and content-aware chunks
combined with gzip and snappy compression. The four graphs follow each
other closely, with the gzip based graph slightly lower than the snappy based
ones.

A.6.3 Summary

From our benchmarks we can see that our Hindsight prototype is slow. Not
unusable (its seems to scale with more data), but significantly slower than
the other systems tested. Not shown in the graphs is its memory use, which
make it impractical to use at the moment. The speed of the prototype is likely
hurt by its excessive memory usage.

However, the prototype does perform very well with respect to both local
and remote space usage. It seems to be on par with the best of the competition,
and even better when it comes to local space usage; likely because it can
compress where others cannot.

We do not see a lot of gain from using content-aware chunks as opposed
to fixed size chunks. Rather we see that the fixed size chunks yield less local
space usage, due to there being fewer hashes (fixed size chunks are 64 KB,
while our content-aware chunks vary from 4 KB to 64 KB).

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 118

 0MB

100MB

200MB

300MB

400MB

500MB

600MB

1 2 3 4 5 6 7 8 9 10

S
p

ac
e

Snapshot

Hindsight (fixed)
Hindsight (rsync)

bup
tarsnap

Brackup

Figure A.12: Local space usage during 10 snapshots of home directory data.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 119

 0GB

 20GB

 40GB

 60GB

 80GB

100GB

120GB

140GB

1 2 3 4 5 6 7 8 9 10

S
p

ac
e

Snapshot

Hindsight (gzip, fixed)
Hindsight (gzip, rsync)

bup
tarsnap

Brackup
rsnapshot

Figure A.13: Remote space usage during 10 snapshots of home directory data.
The two versions of Hindsight, bup and Tarsnap are on top of
each other.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX A. BENCHMARKS 120

 0GB

10GB

20GB

30GB

40GB

50GB

60GB

1 2 3 4 5 6 7 8 9 10

S
p

ac
e

Snapshot

gzip, fixed
gzip, rsync

snappy, fixed
snappy, rsync

Figure A.14: The Hindsight prototype’s space usage during 10 snapshots of
home directory data and in four different configurations.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

B Die test

The following lists the output from a die test where the Hindsight prototype
was set to snapshot a directory with 25,887 files (the 2.6.27.62 version of the
Linux kernel sources), while being interrupted with a KILL signal every 70
seconds (the output has been modified slightly for viewing):

Taking snapshot
Calculating size
Transferring

> 62.64% [3.06 MB/s => 720.92 KB/s]: drivers/net/wireless/b43legacy/sysfs.h
../bin/die-test.sh: line 7: 28708 Killed
Taking snapshot

Rolling back dangling hashes
Checking index consistency
Calculating size
Transferring

> 94.48% [4.02 MB/s => 873.44 KB/s]: Documentation/video4linux
../bin/die-test.sh: line 7: 29123 Killed
Taking snapshot

Rolling back dangling hashes
Checking index consistency
Calculating size
Transferring

> 99.76% [6.23 MB/s => 276.80 KB/s]: CREDITS
../bin/die-test.sh: line 7: 29405 Killed
Taking snapshot

Checking index consistency
Calculating size
Transferring

Saving internal state
Calculating size
Transferring

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen 121

C Getting and verifying the prebuilt Hindsight 64-bit
binary

For convenience, we host a 64-bit binary of our prototype on our website. The
following commands retrieves, verifies and unpacks it:

download the tarball and its sum file
wget http://hind.sight.dk/bin/hindsight-64bit.tar.bz2
wget http://hind.sight.dk/bin/hindsight-64bit.tar.bz2.sum.asc

verify signature file and checksum (see below for expected output)
gpg --verify hindsight-64bit.tar.bz2.sum.asc
sha256sum -c hindsight-64bit.tar.bz2.sum.asc

unpack it
tar xf hindsight-64bit.tar.bz2

setup with default configuration
./hindsight/setup.sh

take first snapshot (named ‘‘foobar’’ and of directory ‘‘/some/path’’)
./hindsight/run.sh snapshot foobar /some/path

If this does not work, consult the README file for information on the needed
shared libraries (We tested the binary on the Ubuntu 11.10 live CD).

The GPG output from verify must look like (key id BF122588):

gpg: Signature made Sat 14 Apr 2012 15:27:38 CEST using RSA key ID BF122588
gpg: Good signature from "Johan Sejr Brinch Nielsen <brinchj@gmail.com>"
gpg: aka "Johan Sejr Brinch Nielsen (DK,Denmark) <zerrez@gmail.com>"
gpg: aka "Johan Sejr Brinch Nielsen (DIKU,Denmark) <zerrez@diku.dk>"
gpg: aka "Johan Sejr Brinch Nielsen (DIKU) <zerrez@diku.dk>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: DF2D C8D0 AD9F 357E A1ED C027 89EB E1CB BF12 2588

You may need to download the public key used:

gpg --search-keys BF122588

The sha256sum check must give the following output (GPG lines are skipped):

hindsight-64bit.tar.bz2: OK
sha256sum: WARNING: 14 lines are improperly formatted

For completeness, we also list the SHA-256 checksum of the tarball here:

b191420513397d89d239b895ed16637c432e81f05ef0835ac0ef79eec4231320

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen 122

D Correspondence with Thomas Conway on concurrent
b-trees

Johan Brinch <zerrez@gmail.com>

Haskell BTrees
10 messages

Johan Brinch <zerrez@diku.dk> Sun, Dec 18, 2011 at 20:57
To: drtomc@gmail.com

Hello Thomas Conway,

I have just discovered your mails on Haskell- cafe from 2007 about
btrees in Haskell:
http://haskell.org/pipermail/haskell- cafe/2007-February/022296.html
http://haskell.org/pipermail/haskell- cafe/2007-August/030800.html

I am interested in learning what approach you ended up taking and
whether it was successful performance wise?
Did you do a write up on the process or is the code available somewhere?

Thanks in advance,

- -
Johan Brinch,
Dept. of Computer Science,
University of Copenhagen

Thomas Conway <drtomc@gmail.com> Sun, Dec 18, 2011 at 22:25
To: Johan Brinch <zerrez@diku.dk>

Hi Thanks for your interest.

Shortly after I wrote those posts, my work took a very different path
(out of information retrieval and into bioinformatics), and I've
barely considered the problem since, unfortunately.

To the extent that I got it all working, the performance was about
what you'd expect from a Haskell implementation - slow compared to
carefully written C++, but with much higher confidence of correctness.
:-)

I have not written up the process further. I can hunt for the code -
it might have been on the machine of my then employer who went bust.

However, if you're interested, I can have a go at reviving the
approach - perhaps collaboratively. I haven't done much Haskell in the
mean time.

T.
[Quo te d te xt hid d e n]

- -
Thomas Conway
drtomc@gmail.com
My friends, love is better than anger. Hope is better than fear.
Optimism is better than despair. So let us be loving, hopeful and
optimistic. And we'll change the world. - Jack Layton

Johan Brinch <zerrez@diku.dk> Mon, Dec 19, 2011 at 12:42
To: Thomas Conway <drtomc@gmail.com>

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen 123

APPENDIX D. CORRESPONDENCE WITH THOMAS CONWAY ON
CONCURRENT B-TREES 124

On Sun, Dec 18, 2011 at 22:25, Thomas Conway <drtomc@gmail.com> wrote:
> I have not written up the process further. I can hunt for the code -
> it might have been on the machine of my then employer who went bust.
>
> However, if you're interested, I can have a go at reviving the
> approach - perhaps collaboratively. I haven't done much Haskell in the
> mean time.

This could be interesting.
Did you go for immutable nodes and update the path to the root each
time, or did you reuse node ids?

And did you do to allow concurrent operations? How much locking did you use?
Did you use any STM code, or just MVar's?

What are your experiences with caching?
[Quo te d te xt hid d e n]

Thomas Conway <drtomc@gmail.com> Tue, Dec 20, 2011 at 04:37
To: Johan Brinch <zerrez@diku.dk>

On Mon, Dec 19, 2011 at 10:42 PM, Johan Brinch <zerrez@diku.dk> wrote:

> Did you go for immutable nodes and update the path to the root each
> time, or did you reuse node ids?

> And did you do to allow concurrent operations? How much locking did you use?
> Did you use any STM code, or just MVar's?

> What are your experiences with caching?

Let me answer these by outlining the architecture, then visiting some
of the details.

What I wanted was a highly concurrent external BTree/B+Tree, modified
"in-place".

The first version was an in-memory concurrent B+Tree that used STM -
each Node has TVar "pointers" to children.

data Node = Internal [(String,TVar Node)] | External [(String,String)]

type BTree = TVar Node

Now the problem with making it highly concurrent in the traditional
sense is that you have to lock all the nodes from the root to the leaf
if making an update. To avoid this, I leveraged the very nice work by
your compatriot Kim S Larsen on "relaxed balance". Basically, you
allow one transaction to yield a slightly unbalanced tree, and then
use a later transaction to repair the balance. The nice property is
that each transaction only needs to lock a small number of nodes. In
the STM paradigm, this is equivalent to needing to write to only a
small number of TVars. Have a look at Kim's papers - they're well
written and nicely done.

So once you sort that part out there remains the problem of making
them external. The idea here is that you maintain a cache of "paged
in" nodes (i.e. BTree pages).

type PageAddress = Integer

type Cache = Map PageAddress (TVar Node)
type CachePtr = TVar Cache

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX D. CORRESPONDENCE WITH THOMAS CONWAY ON
CONCURRENT B-TREES 125

data NodeRef = NodeRef PageAddres

date Node = Internal [(String, NodeRef)] | External [(String,String)]

The operations then take a CachePtr. If a desired PageAddress is not
in the cache, then the transaction can throw an exception which
contains an IO () which when executed loads the desired page and
inserts it into the cache. The driver code can then execute that IO
operation and retry the transaction.

Now this architecture is flawed because there will be a bottleneck
updating the cache. The improved design is to change NodeRef:

type NodePtr = TVar Node
data NodeRef = NodeRef PageAddress (TVar (Maybe Node))

That way the IO () to load the page can be something simple like:

loadPage :: PageAddress (TVar (Maybe Node)) -> ... -> IO ()

loadPage addr dest ... = do
 nd <- readNode addr
 atomic $ writeTVar dest (Just nd)

which localises the locking on the cache.

Now we have the problem of flushing dirty nodes, and having the number
of cached pages exceeding the allowable space. This is the part that I
never completely implemented, but here is the design....

Firstly, to handle dirty pages, when a page/node is updated, the tvar
"pointing" to the page is added to a TChan of dirty pages, and the
page is marked as dirty (by adding a bool to the node). A separate
thread[s] can then remove items from the queue, flush the page and
update it to mark it as clean.

The next part - the prevent an oversized cache is a bit complicated.
The naive and almost-good-enough version is to use weak refs so that
the loadPage function can evict pages if necessary. The problem is
that this might cause a page required by this or another operation to
be evicted. To avoid this, there needs to be a register of pages
required by current transactions. I never settled on a good concrete
design for this.

Well, that went on for longer than I expected. I hope it helps. Come
back with questions and we can begin to mock up part of the code if
you like.

T.
ps The existing code that I wrote is probably copyright the company I
used to work for, so I think we should avoid it and produce new code.
- -
Dr Thomas Conway
[Quo te d te xt hid d e n]

Johan Brinch <zerrez@diku.dk> Thu, Dec 22, 2011 at 13:10
To: Thomas Conway <drtomc@gmail.com>

Blank post!

First, I must warn you - I'm going to Sweden for the holidays and I
may not have Internet access. This starts tomorrows, the 23rd and goes
through the 30th.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX D. CORRESPONDENCE WITH THOMAS CONWAY ON
CONCURRENT B-TREES 126

I also think it's time for some context. I'm doing my master thesis in
cooperation with a friend, and we've set out to write a fully
functional backup system in Haskell, including deduplicity and
encryption. We already have a very simple implementation of a b- tree
that we use for storing hashes and file paths, but it's rather slow
and uses a lot of memory. However, this explains my prior experience
with b- tree's and caches ;)

Now to the good part.

I've now read Kim Larsen's paper on relaxed b- tree and I like the
idea. Particularly, that the rebalancing logic is decoupled from the
update operations. I think this will make the code much cleaner. No
conflicts between updates and rebalancing; you just need to ensure
that none of the changes breaks the wait- less lookup.

I've taken a look at TCache, a cache with a STM interface:
http://hackage.haskell.org/packages/archive/TCache/0.9/doc/html/Data-TCache.html

However, it has it's drawbacks. Firstly, it's written as a global
cache, which means different trees can't use there own cache.
Secondly, it's much more complicated than what we need. But it's a
good start, and the code seems quite clever.

For a simple cache, we could do a fixed size hash table, i.e. a fixed
array of buckets of type [TVar (Ref a)] where (Ref a) is reference to
value:

data State = Clean | Dirty
data Ref a = Ref State (TVar (Maybe a))

Something like that. We may be able to replace Maybe with a weak
reference, but I don't fully grasp the semantics of when they're freed
yet, so I don't know for sure :)

The cache API could be:

class Cache ref (Ref a) where
 getRef :: ref -> Ref a
 put :: ref -> a -> STM ()
 fetch :: ref -> STM a
 delete :: ref -> STM ()

This way, the locking logic becomes very simple.

I believe the operations of the BTree needs to be inside the IO monad,
since we don't want to run the complete operation as a single
transaction (hence locking root). But I must admit, I'm no STM expert
- I just read SPJ's paper ;)

The BTree could be something like:

type NodeId = Word64
data Node k v = Leaf [(k,v)] | Node [k] [NodeId]

data BTree k v = TVar NodeID - - reference to root

Of course, the final structure may also include a channel for dirty
nodes (which i think is a great idea!) and the Ref structure may
include read/write statistics for the flushing mechanism.

Let me know what you think!
I may start building a simple cache over the holidays :)

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX D. CORRESPONDENCE WITH THOMAS CONWAY ON
CONCURRENT B-TREES 127

I may start building a simple cache over the holidays :)

These mails are getting long, are there any better means of communication?
Perhaps a wiki to summarise the ideas?
[Quo te d te xt hid d e n]

Johan Brinch <zerrez@diku.dk> Fri, Jan 6, 2012 at 11:51
To: Thomas Conway <drtomc@gmail.com>

Hi Thomas,

I've now implemented the following:
0) A transactional hashtable in STM
1) A transactional cache in STM using 0)
2) A B+ tree using 1)

The tree still lacks a few things, like the rebalancing logic for
delete, but insert/lookup works.
Rebalancing works in a separate process and lookup is wait- free but
with occasional need for retry (due to rebalancing).

I've also written a flush process for the cache, that flushes by the
~least recently used~ strategy.

I currently see about 20k inserts per sec and 50k lookup per sec on my
X301 laptop.

The code resides in a private github repository for the time being,
but i see no problem in sharing it, if you want to take a look.

There are several things I'd like to improve, but it works, and since
our thesis is due in April, we'll focus on the things we need for the
project for now. I would however like to see this as an open source B+
tree in hackage at some point (perhaps May).

Not much is needed for a release and I even have a pretty sweet quick
check suite ready, to verify it automatically. We could even to
several QC checks concurrently.
[Quo te d te xt hid d e n]

Thomas Conway <drtomc@gmail.com> Mon, Jan 9, 2012 at 01:23
To: Johan Brinch <zerrez@diku.dk>

That's great. Sorry for the longish silence - everything shuts down
round here from Christmas till after New Year. I'm back, but we've
been busy getting a paper together for the ISMB deadline.

I composed a long email which I only got half way through just before
christmas which looks to be redundant now. :-)

WRT delete, one of the Larsen papers does go in to detail. It turns
out that for the same reason that insert is simpler with relaxed
balance, delete is also relatively simple. Perhaps you knew this
already. :-)

Have you tested things to see how they scale as you increase
concurrency? To me that is the most interesting part.
[Quo te d te xt hid d e n]

- -
[Quo te d te xt hid d e n]

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

APPENDIX D. CORRESPONDENCE WITH THOMAS CONWAY ON
CONCURRENT B-TREES 128

Johan Brinch <zerrez@diku.dk> Tue, Feb 7, 2012 at 16:50
To: Thomas Conway <drtomc@gmail.com>

On Mon, Jan 9, 2012 at 01:23, Thomas Conway <drtomc@gmail.com> wrote:
> WRT delete, one of the Larsen papers does go in to detail. It turns
> out that for the same reason that insert is simpler with relaxed
> balance, delete is also relatively simple. Perhaps you knew this
> already. :-)

I'm aware of this, but it's going to be after the master project.
We've freezed the code until the report is ready.

> Have you tested things to see how they scale as you increase
> concurrency? To me that is the most interesting part.

It doesn't seem to scale well beyond 2 cores. I don't know why. The
tree should allow for multiple updates without too many STM conflicts.
It does however gain some from the threaded runtime - even on a single
core. I guess this is due to threads working while others are waiting
for disk. We've tried running it on 8 cores, and even though it does
use tons of CPU (500% or so) it doesn't use less wall time. Could seem
like STM is conflicting somewhere.

Btw, i've implemented to more features:

1) A generation concept that allow a thread to freeze the current
version of the tree and query it while other workers are still
updating. One such version can be maintained until no one is using it
anymore. This is implemented directly in the cache on a page level.

2) One can hint the underlying cash about dependencies: This page must
be written before that page. We use this to hint that tree nodes must
be written before the parent who's referencing it (bottom-up). Nodes
without hints (e.g. deleted nodes) are written after nodes with hints
(updated nodes). This way we can flush the tree while maintaining a
consistent external state at all times. And by 1) while other workers
are still updating it.
[Quo te d te xt hid d e n]

Johan Brinch <zerrez@diku.dk> Thu, Mar 8, 2012 at 10:05
To: Thomas Conway <drtomc@gmail.com>

Hey Thomas,

I need your acceptance for us to include our email correspondance as
an appendix of our master thesis. Of course, you are mentioned in the
thesis itself for your guidance ;)

Also, I'm going to work more on the tree after the project, and see if
I can improve performance further.
I have some ideas, but most of them require the tree to be locked to
bytestring keys and bytestring values. Do you think this would be too
strict?
[Quo te d te xt hid d e n]

Thomas Conway <drtomc@gmail.com> Thu, Mar 8, 2012 at 10:16
To: Johan Brinch <zerrez@diku.dk>

That will be fine. Sorry I haven't been more communicative! Life gets busy as you know, I am sure.
[Quo te d te xt hid d e n]

[Quo te d te xt hid d e n]

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

Bibliography

[1] Bitcasa. URL http://goo.gl/yVq0f.

[2] brackup: Flexible backup tool. Slices, dices, encrypts, and sprays across
the net. URL http://goo.gl/zF3BS.

[3] Dropbox. URL http://goo.gl/BGjRd.

[4] Git: the fast version control system. URL http://git-scm.com.

[5] Apple Time Machine. URL http://goo.gl/OEHld.

[6] Yesod Web Framework. URL http://goo.gl/KS8oD.

[7] Oracle key-compressed index, 2008. URL http://goo.gl/nfriC.

[8] Saleh E. Abdullahi and Graem A. Ringwood. Garbage collecting the
internet: a survey of distributed garbage collection. ACM Comput. Surv.,
30(3):330–373, September 1998. ISSN 0360-0300.

[9] AES. Advanced encryption standard. URL http://goo.gl/NdHfh.

[10] Jesper Louis Andersen. A concurrent bittorrent client. URL http://goo.
gl/jnBXP.

[11] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C.-W.
Phan. Sha-3 proposal blake. Technical report, December 2010.

[12] Henry G. Baker. Infant mortality and generational garbage collection.
SIGPLAN Not., 28(4):55–57, April 1993. ISSN 0362-1340.

[13] Elaine Barker and Allen Roginsky. Transitions: Recommendation for
transitioning the use of cryptographic algorithms and key lengths. SP-
800-131a, U.S. DoC/National Institute of Standards and Technology, 2011.
See http://goo.gl/Ti2Eo/.

[14] Fernando "Brujo" Benavides. *Very* basic Erlang-like process support for
Haskell. URL http://goo.gl/Qcnpr.

[15] Daniel J. Bernstein. Cache-timing attacks on aes. Technical report, 2005.
URL http://goo.gl/iFSBz.

[16] Daniel J. Bernstein. The poly1305-aes message-authentication code. 03

2005. URL http://goo.gl/ffVga.

[17] Daniel J. Bernstein. Extending the Salsa20 nonce. 11 2008. URL http:
//goo.gl/ZRa7K.

[18] Daniel J. Bernstein. Cryptography in NaCl. 03 2009. URL http://goo.
gl/lqQ7K.

[19] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. The security impact
of a new cryptographic library. 01 2011. URL http://goo.gl/E5B5C.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen 129

http://goo.gl/yVq0f
http://goo.gl/zF3BS
http://goo.gl/BGjRd
http://git-scm.com
http://goo.gl/OEHld
http://goo.gl/KS8oD
http://goo.gl/nfriC
http://goo.gl/NdHfh
http://goo.gl/jnBXP
http://goo.gl/jnBXP
http://goo.gl/Ti2Eo/
http://goo.gl/Qcnpr
http://goo.gl/iFSBz
http://goo.gl/ffVga
http://goo.gl/ZRa7K
http://goo.gl/ZRa7K
http://goo.gl/lqQ7K
http://goo.gl/lqQ7K
http://goo.gl/E5B5C

BIBLIOGRAPHY 130

[20] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak specifications. Technical report, October 2008.

[21] David I Bevan. An efficient reference counting solution to the distributed
garbage collection problem. Parallel Computing, 9(2):179 – 192, 1989.
ISSN 0167-8191.

[22] Carsten Binnig, Stefan Hildenbrand, and Franz Färber. Dictionary-
based order-preserving string compression for main memory column
stores. In Proceedings of the 35th SIGMOD international conference on
Management of data, SIGMOD ’09, pages 283–296, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-551-2.

[23] Christopher M. Bishop. Pattern Recognition and Machine Learning
(Information Science and Statistics). Springer, 1st ed. 2006. corr. 2nd
printing edition, October 2007. ISBN 0387310738.

[24] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, July 1970. ISSN 0001-0782.

[25] Hans-J. Boehm. Dynamic memory allocation and garbage collection.
Comput. Phys., 9(3):297–303, May 1995. ISSN 0894-1866.

[26] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncoop-
erative environment. Softw. Pract. Exper., 18(9):807–820, September 1988.
ISSN 0038-0644.

[27] S. Brin, J. Davis, and H. Garcia-Molina. Copy detection mechanisms for
digital documents. In ACM International Conference on Management
of Data (SIGMOD 1995), 1995.

[28] Andrei Z. Broder. On the resemblance and containment of documents. In
In Compression and Complexity of Sequences (SEQUENCES’97, pages
21–29. IEEE Computer Society, 1997.

[29] George Candea and Armando Fox. Crash-only software. In Proceedings
of the 9th conference on Hot Topics in Operating Systems - Volume 9,
HOTOS’03, pages 12–12, Berkeley, CA, USA, 2003. USENIX Association.

[30] David Chase. GC FAQ – draft. URL http://goo.gl/YkPKL.

[31] Jonathan D. Cohen. Recursive hashing functions for n-grams. ACM
Trans. Inf. Syst., 15(3):291–320, July 1997. ISSN 1046-8188.

[32] Douglas Comer. Ubiquitous b-tree. ACM Comput. Surv., 11:121–137,
June 1979. ISSN 0360-0300.

[33] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction To
Algorithms. Mit Press, 2001. ISBN 9780262032933.

[34] On P. Cox, Christopher D. Murray, and Brian D. Noble. Pastiche: making
backup cheap and easy. In OSDI: Symposium on Operating Systems
Design and Implementation, pages 285–298, 2002.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

http://goo.gl/YkPKL

BIBLIOGRAPHY 131

[35] Scott A. Crosby and Dan S. Wallach. Denial of service via algorithmic
complexity attacks. In Proceedings of the 12th conference on USENIX
Security Symposium - Volume 12, SSYM’03, pages 3–3, Berkeley, CA,
USA, 2003. USENIX Association.

[36] James da Silva and Blair Zajac. AMANDA: Advanced Maryland Auto-
matic Network Disk Archiver. URL http://goo.gl/wXJ1r.

[37] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. On-the-fly garbage collection: an exercise in cooperation.
Commun. ACM, 21(11):966–975, November 1978. ISSN 0001-0782.

[38] Anthony Discolo, Tim Harris, Simon Marlow, Simon Jones, and Satnam
Singh. Lock free data structures using stm in haskell. pages 65–80. 2006.

[39] John R. Douceur and William J. Bolosky. A large-scale study of file-
system contents. SIGMETRICS Perform. Eval. Rev., 27:59–70, May 1999.
ISSN 0163-5999.

[40] John R. Douceur, John R. Douceur, Atul Adya, Atul Adya, William J.
Bolosky, William J. Bolosky, Dan Simon, Dan Simon, Marvin Theimer,
and Marvin Theimer. Reclaiming space from duplicate files in a serverless
distributed file system. In Proceedings of 22nd International Conference
on Distributed Computing Systems (ICDCS, 2002.

[41] Jeff Epstein. Cloud haskell. URL http://goo.gl/FVUQT.

[42] Ben Escoto and Kenneth Loafman. Duplicity: Encrypted bandwidth-
efficient backup using the rsync algorithm. URL http://goo.gl/jwzSk.

[43] Niels Ferguson and Bruce Schneier. Practical Cryptography. John Wiley
& Sons, Inc., New York, NY, USA, 1 edition, 2003. ISBN 0471223573.

[44] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir
Bellare, Tadayoshi Kohno, Jon Callas, and Jesse Walker. The skein hash
function family. Technical report, 2009.

[45] Apache Software Foundation. Apache CouchDB. URL http://goo.gl/
h8cPm.

[46] Larry Freeman. Looking Beyond the Hype: Evaluating Data Deduplica-
tion Solutions. 1988.

[47] fuse. FUSE: Filesystem in Userspace. URL http://goo.gl/dU7mV.

[48] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian
Mendel, Christian Rechberger, Martin Schläffer, and Søren S. Thomsen.
Grøstl – a sha-3 candidate. Technical report, March 2011.

[49] Søren Hansen. Surveilr: A different sort of monitoring system. URL
http://goo.gl/Noea0.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

http://goo.gl/wXJ1r
http://goo.gl/FVUQT
http://goo.gl/jwzSk
http://goo.gl/h8cPm
http://goo.gl/h8cPm
http://goo.gl/dU7mV
http://goo.gl/Noea0

BIBLIOGRAPHY 132

[50] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Her-
lihy. Composable memory transactions. In Proceedings of the tenth
ACM SIGPLAN symposium on Principles and practice of parallel
programming, PPoPP ’05, pages 48–60, New York, NY, USA, 2005. ACM.
ISBN 1-59593-080-9.

[51] Ragib Hasan, Suvda Myagmar, Adam J. Lee, and William Yurcik. Toward
a threat model for storage systems. In Proceedings of the 2005 ACM
workshop on Storage security and survivability, StorageSS ’05, pages
94–102, New York, NY, USA, 2005. ACM. ISBN 1-59593-233-X.

[52] Val Henson. An analysis of compare-by-hash. In Proceedings of the 9th
conference on Hot Topics in Operating Systems - Volume 9, HOTOS’03,
pages 3–3, Berkeley, CA, USA, 2003. USENIX Association.

[53] Tim Hickey and Jacques Cohen. Performance analysis of on-the-fly
garbage collection. Commun. ACM, 27(11):1143–1154, November 1984.
ISSN 0001-0782.

[54] Simon P. Jones. Beautiful Concurrency. O’Reilly Media, Inc., 2007. ISBN
0596510047.

[55] Kabooza. Kabooza global backup survey. Technical report, Kabooza,
Stockholm, Sweden, 2009.

[56] Oleg Kiselyov. Iteratees. URL http://goo.gl/nQAxo.

[57] Oleg Kiselyov and John W. Lato. Iteratee-based I/O. URL http://goo.
gl/fTSds.

[58] Alexander Klink and Julian Wälde. Denial of Service through hash table
multi-collisions. December 2011.

[59] Kim S. Larsen and Rolf Fagerberg. B-trees with relaxed balance. In
Proceedings of the 9th International Parallel Processing Symposium,
pages 196–202. IEEE Computer Society Press, 1993.

[60] Nate Lawson. Timing attack in Google Keyzcar, 2009. URL http://goo.
gl/kNY27.

[61] U. Maheshwari and B.H. Liskov. Fault-tolerant distributed garbage col-
lection in a client-server object-oriented database. In Proceedings of the
Third International Conference on Parallel and Distributed Information
Systems, pages 239–248. IEEE, 1994.

[62] Udi Manber. Finding similar files in a large file system. In Proceedings
of the USENIX Winter 1994 Technical Conference on USENIX Winter
1994 Technical Conference, pages 2–2, Berkeley, CA, USA, 1994. USENIX
Association.

[63] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger,
Alex Tomas, and Laurent Vivier. The new ext4 filesystem: current status
and future plans. In Proceedings of the Linux Symposium, pages 21–37,
Ontario, Canada, June 2007. URL goo.gl/260wb.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

http://goo.gl/nQAxo
http://goo.gl/fTSds
http://goo.gl/fTSds
http://goo.gl/kNY27
http://goo.gl/kNY27
goo.gl/260wb

BIBLIOGRAPHY 133

[64] Ralph C. Merkle. A digital signature based on a conventional encryp-
tion function. In A Conference on the Theory and Applications of
Cryptographic Techniques on Advances in Cryptology, CRYPTO ’87,
pages 369–378, London, UK, UK, 1988. Springer-Verlag. ISBN 3-540-
18796-0.

[65] Dutch T. Meyer and William J. Bolosky. A study of practical deduplica-
tion. In Proceedings of the 9th USENIX conference on File and stroage
technologies, FAST’11, pages 1–1, Berkeley, CA, USA, 2011. USENIX
Association. ISBN 978-1-931971-82-9.

[66] John Millikin. Enumerator: Simple, Efficient Incremental IO for Haskell.
URL http://goo.gl/wznyG.

[67] Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM Trans.
Netw., 10(5):604–612, October 2002. ISSN 1063-6692.

[68] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-
bandwidth network file system. SIGOPS Oper. Syst. Rev., 35(5):174–187,
October 2001. ISSN 0163-5980.

[69] NIST. Cryptographic Hash Algorithm Competition. Technical report,
November 2007.

[70] openssl.org. Timing-based attacks on RSA keys. URL http://goo.gl/
znNGf.

[71] Harel Paz, David F. Bacon, Elliot K. Kolodner, Erez Petrank, and V. T.
Rajan. An efficient on-the-fly cycle collection. ACM Trans. Program.
Lang. Syst., 29(4), August 2007. ISSN 0164-0925.

[72] Avery Pennarun. bup: It backs things up. URL http://goo.gl/Tjdg6.

[73] Colin Percival. Tarsnap: Online backups for the truly paranoid. URL
http://goo.gl/CYUsT.

[74] Colin Percival and Taylor R Campbell. Tarsnap critical security bug. URL
http://goo.gl/Dq3ie.

[75] pgsql hackers. Postgresql prefix b-tree discussion, 2005. URL http:
//goo.gl/mFbtd.

[76] Rob Pike, Dave Presotto, Ken Thompson, and Howard Trickey. Plan
9 from bell labs. In In Proceedings of the Summer 1990 UKUUG
Conference, pages 1–9, 1990.

[77] Sean Quinlan and Sean Dorward. Venti: A new approach to archival
storage, 2002.

[78] M O Rabin. Fingerprinting by random polynomials. Technical Report
TR1581 Center for Research in, (TR-15-81):15–18, 1981.

[79] Nikolaus Rath. S3QL: A full-featured file system for online data storage.
URL http://goo.gl/2LHiR.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

http://goo.gl/wznyG
http://goo.gl/znNGf
http://goo.gl/znNGf
http://goo.gl/Tjdg6
http://goo.gl/CYUsT
http://goo.gl/Dq3ie
http://goo.gl/mFbtd
http://goo.gl/mFbtd
http://goo.gl/2LHiR

BIBLIOGRAPHY 134

[80] Marsh Ray. SSL flaw in renegotiation logic. URL http://goo.gl/l5LVB.

[81] Impulse Research. Data backup survey. Technical report, Impulse Re-
search, Los Angeles, California, 2010.

[82] Sean Rhea, Russ Cox, and Alex Pesterev. Fast, inexpensive content-
addressed storage in foundation. In USENIX 2008 Annual Technical
Conference on Annual Technical Conference, ATC’08, pages 143–156,
Berkeley, CA, USA, 2008. USENIX Association.

[83] Nathan Rosenquist, David Cantrell, and David Keegel. rsnapshot: A
remote filesystem snapshot utility, based on rsync. URL http://goo.gl/
n4BLa.

[84] Bruce Schneier. Applied cryptography (2nd ed.): protocols, algorithms,
and source code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.
ISBN 0-471-11709-9.

[85] Amazon Web Services. Amazon Simple Storage Service. URL http:
//goo.gl/wXJ1r.

[86] Nir Shavit and Dan Touitou. Software transactional memory. In
Proceedings of the fourteenth annual ACM symposium on Principles
of distributed computing, PODC ’95, pages 204–213, New York, NY,
USA, 1995. ACM. ISBN 0-89791-710-3.

[87] Dilip Simha. The Art of Data Deduplication, September 2011.

[88] Michael Snoyman. Conduit: Streaming data processing library. URL
http://goo.gl/p7Pio.

[89] Michael Szydlo. Merkle tree traversal in log space and time. In Chris-
tian Cachin and Jan Camenisch, editors, Advances in Cryptology -
EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer Science,
pages 541–554. Springer Berlin / Heidelberg, 2004. ISBN 978-3-540-21935-
4.

[90] Yujuan Tan, Hong Jiang, Dan Feng, Lei Tian, Zhichao Yan, and Guohui
Zhou. Sam: A semantic-aware multi-tiered source de-duplication frame-
work for cloud backup. In Proceedings of the 2010 39th International
Conference on Parallel Processing, ICPP ’10, pages 614–623, Washington,
DC, USA, 2010. IEEE Computer Society. ISBN 978-0-7695-4156-3.

[91] Andrew Tridgell and Paul Mackerras. The rsync algorithm. Technical
report, Computer Science, Australian National University, Canberra,
Australia, 1996.

[92] P. van Emde Boas. Preserving order in a forest in less than logarithmic
time. In Proceedings of the 16th Annual Symposium on Foundations of
Computer Science, SFCS ’75, pages 75–84, Washington, DC, USA, 1975.
IEEE Computer Society.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

http://goo.gl/l5LVB
http://goo.gl/n4BLa
http://goo.gl/n4BLa
http://goo.gl/wXJ1r
http://goo.gl/wXJ1r
http://goo.gl/p7Pio

BIBLIOGRAPHY 135

[93] Michael Vrable, Stefan Savage, and Geoffrey M. Voelker. Cumulus:
Filesystem backup to the cloud. Trans. Storage, 5:14:1–14:28, December
2009. ISSN 1553-3077.

[94] Paul R. Wilson. Uniprocessor garbage collection techniques. In
Proceedings of the International Workshop on Memory Management,
IWMM ’92, pages 1–42, London, UK, UK, 1992. Springer-Verlag. ISBN
3-540-55940-X.

[95] Hongjun Wu. The Hash Function JH. Technical report, January 2011.

[96] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck
in the data domain deduplication file system. In Proceedings of the 6th
USENIX Conference on File and Storage Technologies, FAST’08, pages
18:1–18:14, Berkeley, CA, USA, 2008. USENIX Association.

Johan Sejr Brinch Nielsen & Morten Brøns-Pedersen Hindsight: Secure and flexible backup

	Contents
	Introduction
	Motivation
	Scope
	Background
	Overview

	Analysis
	Functionality
	Properties
	Cost-benefit

	Design
	API
	Overview
	Terminology
	Indices
	Deduplication
	Deletion
	Crash Recovery
	Security
	External Storage
	Storage format
	Summary

	Implementation
	Installing and using the prototype
	System design
	Indices
	Crash recovery
	Back-end modules
	Deletion
	Security
	Iteratee

	Evaluation
	Comparison
	Quality
	B-trees
	Benchmarks

	Further work
	Crash safety
	Asymmetric encryption
	Indices
	Garbage Collection
	B-trees
	Alternative Front-ends
	Alternative back-ends
	Encoding format

	Conclusion
	Benchmarks
	B-tree compared to SQLite3
	Writing log files in bulk
	A million files
	Bit-vector encoded reference lists
	Conservative garbage collection
	Test on real data

	Die test
	Getting and verifying the prebuilt Hindsight 64-bit binary
	Correspondence with Thomas Conway on concurrent b-trees
	Bibliography

