Statistical Analysis of Music Corpora

TOPPS - Semantics-based Program Analysis and Manipulation

January 16, 2009

Johan Sejr Brinch Nielsen

Email: zerrez@diku.dk
Cpr.: 260886-2547
Supervisor: Jakob G. Simonsen

Dept. of Computer Science,
University of Copenhagen

CHAPTER 0O

Abstract

| investigate trends in musical complexity, specifically by computing the en-
tropy of chord sequences.

| analyse 571 Mozart pieces (of 626 in totaff). The result shows an in-
crease in entropy over time in at least five categories, specifically divertimen-
tos and serenades, piano pieces, piano trios, string quartets and symphonies.
And increase in entropy is also observed as the works grow larger; the corre-
lation between chord mass and entropy is shown to be 0.59. Furthermore, |
show that operas generally has the highest entropy (2.47), while canons and
songs has the lowest (0.86 and 0.74 respectively).

The results are based on Mozart works only, thus only applies to these.
However the framework used to compute the results is general and can be
reused or expanded in future studies.

The results show promise for entropy as a measure for musical complexity.

IMozart works categorized by L. von Koechel (www.classical.net)

Analysis of Music Corpora 2 Johan Sejr Brinch Nielsen
January 16, 2009

Contents

(I Introductory Theory| 7
1.1 Intr oNnlo 8
[1.1.1 Contributions 9
[1.1.2 Related Workl 9
[1.1.3 Expectations of the Reader|. 10
[1.1.4 Overviewl 10
(1.2 Statistical Methodsl 11
(2.1 Statistics and Musicfo 11
(1.2.2 Entropy|l 12
[1.2.3 Expanding the Entropy Model with History] 13
[1.2.4 Generalising History|. 14
1.2.5 Phenomenons 15
[[.2.6 Drawbacks 16

1.3 lIdentifying Chords| 18
2 Tmplementation Details| 19
2.1 _Overviewl. 20
2.2 Input Data|. 21
2.1 Possible Music Databases 21
[2.2.2 International Music Score Library Project] 21
223 Mozarteum|o 21
.24 Conclusionl 22

2.3 Generating MusicXML from Scores|. 23
2.3.1 Commercial Music OCR Softwarel 23
[2.3.2 Converting scoresto BMP| 24

2.4 SharpEye Pro| 25
2.4.1 Convert MRO files into MusicXMLI| 25

2.5 MusicXML|.o 29
2.5.1 A Simple Example| 30

CONTENTS CHAPTER 0O

RB2 Parfs 31

253 Measures 31

254 Notesand Chordsl. 31

2.5.5 Infelicities of MusicXML| 32

2.6 Improving the Quality of Digitised Scores| 34
[2.6.1 Extending segments verticallyl 34

2.7 Database Selectionl 36

[3 Statistical Analysis| 37
B.1 _Methodsl 38
[3.1.1 Interpolation| 38

[3.1.2 Correlationl 38

3.2 Results|. 40
3.2.1 Orderedby Yead 40

[3.2.2 Ordered by Category| 45

[3.2.3 Ordered by Length| 55

3.2.4 Conclusionl 61

3.3 _Conclusionl. 63

(A~ Work Categories| 65
[B~ Missing Works| 67
[C Implementation Details| 68
[C.0.1 Ripping http://dme.mozarteum.net| 68

[C.0.2 Crawling http://dme.mozarteum.net| 69

[C.0.3 Converting JPG Pagesto BMP| 70

[C.0.4 Converting BMP Pagesto XML| 70

[C.0.5 Converting XML Pages to Chords| 72

[C.0.6 Calculating Entropy from Chords|. 72

[C.0.7 Making Graphs from Entropy|. 74

[C.0.8 Thelocal Website] 75
[D_Source Codel 76
[D.0.9 /src/make graphs2.py|. 76

[D.0.10 /src/start_bmp to xmlpy 81

[D.0.11 /src/graphics/ init__.py| 83

[D.0.12 /src/graphics/plotting.py|. 83

[D.0.13 /src/graphics/imaging.py|. 85

[D.0.14 /src/mozateum/ init .py|. 86
Analysis of Music Corpora 4 Johan Sejr Brinch Nielsen

January 16, 2009

CONTENTS CHAPTER 0O

[D.0.15 /src/mozateum/crawler.py| 86
[D.0.16 /src/process emtpy.py|. 86
[D.0.17 /src/ocr/serverpyl 88
[D.0.18 /src/ocr/ init __py|. 89
[D.0.19 /src/mozart _xml Teftpy] 89
[D.0.20 /src/scan_image.py| 91
[D.0.21 /src/database/ _init__py|. 91
[D.0.22 /src/database/test.py] 92
[D.0.23 /src/database/models/chord.py| 93
[D.0.24 /src/database/models/ init __.py| 93
[D.0.25 /src/database/models/composer _resource.py] . . . 94
[D.0.26 /src/database/models/work.py] 94
[D.0.27 /src/database/models/resource _group.py] 94
[D.0.28 /src/database/models/resource.pyl. 95
[D.0.29 /src/database/models/category.py|. 95
[D.0.30 /src/database/models/entropy.pyl 95
ID.0.31 /src/database/models/work resource.py| 95
[D.0.32 /src/database/models/composer.py 95
[D.0.33 /src/music/ _ init__py| ... 96
[D.0.34 /src/music/music.pyl 96
[D.0.35 /src/music/chords.pyl. 102
[D.0.36 /src/extract chords.py|. 103
[D.0.37 /src/mozart _xml_rightpy]. 105
[D.0.38 /src/make graphs.py] 106
[D.0.39 /src/start _ocr serverpy| 110
[D.0.40 /src/rip_mozart.py]. 111
[D.0.41 /src/update page count.py]. 112
[D.0.42 Jsrc/vbs/ it py. 112
[D.0.43 /src/statistics/ __init___py|. 113
[D.0.44 /src/statistics/correlation.py| 113
[D.0.45 /src/statistics/entropy.py| 113
[D.0.46 /src/imslp/ init __ py|. 116
[D.0.47 /src/imslp/crawlerpyl. 116
[D.0.48 /src/crawl _mozart.py] 119
[D.0.49 /src/crawlpy], 120
[D.0.50 /src/mozart _bmp.py|. 120
[D.0.51 /src/crawl _mozart _works.py] 121
[D.0.52 /src/update site_values.py| 125
[D.0.53 /src/testpy| 127
Analysis of Music Corpora 5 Johan Sejr Brinch Nielsen

January 16, 2009

CONTENTS CHAPTER 0O

[D.0.54 /src/update K nrpy| 127
[D.0.55 /src/parsers/ xml/ init __py| 128
[D.0.56 /src/parsers/ xmi/handler.py] 130
[D.0.57 /src/parsers/ xml/traversers.py] 130
[D.0.58 /src/parsers/ init __pyl. 131
[D.0.59 /src/parsers/ocr/ init__py| 131
[D.0.60 /src/parsers/ocr/sharpeyepyl. 131
[D.0.61 /src/parsers/mro/ init __py|. 132
[D.0.62 /src/parsers/mro/handler.py| 132
[D.0.63 /src/parsers/mro/traversers.pyl 133
[D.0.64 /src/parsers/pdf/ init __py| 135
[D.0.65 /src/util/ _ init__.py|. 138
[D.0.66 /src/util/io.pyl 138
[D.0.67 /src/util/ocr.py|. 138
[D.0.68 /src/util/imaging.py| 141
[D.0.69 /src/util/pdfpyl. 141
[D.0.70 /src/entropy test.py|. 141
[D.0.71 /src/mozart.pyl 142
[D.0.72 /src/supervisor.py|. 142
D.0.73 /src/url/ init py| . ..o 143
D.0.74 /src/mozart xml back.py|. 143
[D.0.75 /src/configpyl. 144
[D.0.76 /src/calc_entropy.py| 146
D.0.77 /src/pdfpy| 146
[D.0.78 /src/mozart _xmlpy| 147
[D.0.79 /src/calculate _entropies.py] 148
[D.0.80 /src/stats.pyl 149
Analysis of Music Corpora 6 Johan Sejr Brinch Nielsen

January 16, 2009

Chapter 1

Introductory Theory

[T Introduction
T2 Statistical Methods
I3 Identification of Chords

1.1. INTRODUCTION CHAPTER 1

1.1 Introduction

Musical pieces are built on a foundation of chords, which are selected from the
Circle of Fifth (Miller, 2005); a diagram that explains which chords sounds
well together. As a consequence of deriving chord progressions from this
system the musical pieces end up sounding harmonic, however alike.

An example of a chord progression that appears in a countless number of

songs are (see Williams, 2008]):
n C F G C

} } }
"4 [[[[
A y A [é ;j' [

The goal of this project is to discover these typical chord progressions
generically to measure the complexity of the piece itself. | use information
entropy from basic statistics to model this complexity. This model supports
history of size n, which | exploit to detect the chord progression repetitions.

| discuss how musical information can be obtained, processed and prepared
for the statistical analysis. This process includes generation of MusicXML
from graphical notation formats (e.g. Bitmap images) and extraction of the
needed information from MusicXML.

| create an environment that allows for such analysis of complexity in an
automated manner. Using this environment | examine how the complexities
of 571 of Mozart's works develop over time and category.

Analysis of Music Corpora 8 Johan Sejr Brinch Nielsen
January 16, 2009

1.1. INTRODUCTION CHAPTER 1

1.1.1 Contributions

| show how the complexity of musical pieces can be described using entropy
and perform statistical analysis on 571 of Mozart's works, spreading across
32 categories.

| show that the entropy values of Mozart works grow year by year in
at least 5 categories, specifically divertimentos and serenades, piano pieces,
piano trios, string quartets and symphonies. | show that this is also the case
across categories during Mozart's first 16 years. | show that operas are most
likely to have a high entropy value, whereas finding such in canons and songs
are least likely. Furthermore, | show that longer works have higher entropy
values.

Furthermore | provide a framework that implements generation of Mu-
sicXML from graphical notation formats (e.g. BMP files), extraction of
necessary musical information from MusicXML and analysis of such using
entropy. The modular design of the framework eases it's use in future work
and allows it to be easily expanded.

1.1.2 Related Work

(Shannon, [1948) introduced the field of information theory and for-
malised the models for both conditional and unconditional entropy.

(Margulis, 2005) proposed a model of melodic expectation, based on
heuristics rather than entropy. The project attemps to quantify the
musical experience of a work, based on a small selection of progression
features.

(Temperley, 2007)) discusses how music and probability can be united
using a Bayesian. Musical elements such as pattern perception, har-
mony, improvisation, and musical styles are discussed.

(Marqulis and Beatty, |2008) uses entropy to compare the complexity
of works. The materials used are spread over several artists (including
Mozart and Bach), however significantly smaller than what is used in
this project (a total of 167 works). Their model compares 8 different
features, including active parts and note lengths, but excluding chord
progression which is analysed in this project. Furthermore, their model
uses a history of 1 where the model | present in this paper generalises
this to history of n.

Analysis of Music Corpora 9 Johan Sejr Brinch Nielsen
January 16, 2009

1.1. INTRODUCTION CHAPTER 1

1.1.3 Expectations of the Reader

| assume that the reader has an understanding of musical notation, including
the meaning of notes, measures and parts, corresponding to the level of
(Surmani, 1998)). Besides this, the reader should know of the XML file format
and how this format is used to structure other formats, corresponding to the
level of (Ray, [2003). The reader should also have knowledge of basic math
and statistics, corresponding to the level of (Johnson|, 2008).

1.1.4 Overview

In Section [1.2]| explain how entropy is a representation of musical complexity.
| introduce the statistical methods needed when working with entropy and
show how unconditional entropy can be generalised into conditional entropy.

In Section [1.3] 1 give a recursive algorithm for identifying an accord based
on its note.

In Section [2.1]| give an overview of the implementation details.

In Section | compare the International Music Score Library Project
with Mozarteum, with respect to automated computing.

In Section | go through the work involved when converting scores to
the MusicXML format. | describe several different OCR applications and why
| ended up using SharpEye.

In Section 2.5 | describe the details of the MusicXML format. | describe
how MusicXML represents notes, measures and parts and document where
MusicXML differs from typical XML formats.

In Section | describe the problems involved with scanned notes, and
give a simple algorithm for improving such notes.

In Section | describe the problem of interpolation and show how this
problem can be solved using operations research. | move on to describe the
correlation coefficient and how this can be computed. Afterwards | go through
the statistical results.

Analysis of Music Corpora 10 Johan Sejr Brinch Nielsen
January 16, 2009

1.2. STATISTICAL METHODS CHAPTER 1

1.2 Statistical Methods

The goal of this project is to compare the complexity of musical works. As a
measure of complexity | use predictability; how easy the work can be predicted.
The complexity of a work is then the probability of guessing the next chord
in the work, knowing the n preceding chords.

This probability of guessing the next chord is computed from the number
of possible choices, N, for each chord:

P=N
The number of possible choices is based on the current work and how
chords are used in this particular work. Since the probability is computed
from N, only N is needed when comparing predictability. | go even further
and say that only the number of digits used to represent N is needed. The
number of digits in N is computed as:

D = logy N

where b is the chosen base. The higher the number of digits needed to
represent the possible choices, the lower the predictability.

The number of digits needed to represent any state of a sequence can be
computed using statistical entropy. To reach the probability of guessing the
next chord, | compute the entropy value, H, and then the probability by:

In this project | will focus on digits in base 2 (bits), a natural choice in the
field of Computer Science.

1.2.1 Statistics and Music

Before describing the statical methods | use in this project, | introduce the
needed terminology:

e Random variables: variables who's values are unknown
e Random Vector: a vector containing several random variables

e [vents: occur when a random variable takes a particular value

Analysis of Music Corpora 11 Johan Sejr Brinch Nielsen
January 16, 2009

1.2. STATISTICAL METHODS CHAPTER 1

e Probability spaces: defines all possible outcome of the variables together
with their probability

| use a random variable to represent a chord. A work is then a sequence of
successive experiments with a single random variable. The probability space
contains all possible chords, chosen as:

e All standard chords, major or minor:
“A", “Am”, “Bb”, ..., “Gb", “G”"

e All standard chords expanded with the seven:
“ATT, "AmTY, “BbTT, L., fGhTY, CGTT

More complex variations of chords (such as adding the second or six), are
not counted as begin different from the standard chord.

1.2.2 Entropy

The entropy value measures the information contained in the random vector,
hence how many bitdl] are needed to represent the vector, no matter state:
The entropy value of a random vector, X, is computed as:

|E|

Z P(E;) - logy((1Ez))

|E]|

:—ZP) - loga(P(E;))

where E is the set of pOSSIb|e events in the probability space and P(e € E)
is the probability of event e. The probability of an event is computed as its
frequency:
| {¢/ =e,e € E} |
| £

The highest entropy value occurs when all events are equally likely, while
the lowest entropy occurs when just one event occurs is repeated. This is
what one would expect from predictability.

The highest possible value is (P(E;) =):

P(e) :==

|E|

-3 P(B) Togo(P(E)

1Base 2 is used, as described in Section

Analysis of Music Corpora 12 Johan Sejr Brinch Nielsen
January 16, 2009

1.2. STATISTICAL METHODS CHAPTER 1

1

=—|E]| m)

-1
’ E | OgZ(

=~ logy(57) = lomal| £)

While the lowest is (P(E;) =1, P~y = 0):

|E|
Z —1- P(E;) -logy(P(E;))
|E]
—P(FEy) - logy (P Z P(E:) - logy(P(Ey))

|E]|
:—1-O—Zo-log2(0) =
i=2

These extrema values will be constant despite the actual musical work,
since the number of possible chords will always be constant.

This computation does however have an unfortunate property. Since the
entropy value is independent of the order of the events in S, any permutation
of S will yield the same entropy value (the same predictability).

An example of this could be the following two musical pieces:
A c ¢ Cc C 2F F F F
)’ A

N —_——
A S
F C F

A F

SCEE R PR
Piece A would sound very monotonic, since it repeats four chords at a
time. B seems to variate its use of the two chords more than A and should
therefore be awarded with a higher entropy value.
However, the above definition of entropy yields the same entropy value for

both pieces, since B is a permutation of A.
| describe how this problem is eased in the following section.

I I
[

gigf

2 F

1.2.3 Expanding the Entropy Model with History

In the previous section | introduced an entropy model with a history of length
0 (none). In this section | show how this entropy model can be expanded to
use a history of the n chords.

Analysis of Music Corpora 13 Johan Sejr Brinch Nielsen
January 16, 2009

1.2. STATISTICAL METHODS CHAPTER 1

A history of 1 is equivalent to examining the transitions between pairs of
chords. Listing the transitions from the example introduced in Section [1.2
yields:

A" C—C, C—C, C—C, C—F, F—F, F—F, F—F
B': F—F, F—=C, C—=F, F—C, C—=F, F—C, C—=C

The number of possible events is now 4 instead of 2 (when only counting
C and F chords as possible). Each event are expanded from a single chord
into a transition.

Below is a table showing the distribution of events in piece A’ and B’:

Event | A’ B’

C—C |0.429 | 0.143
C—F |0.143 | 0.286
F—C | 0.000 | 0.429
F—F | 0.429 | 0.143

Piece B’ should have a higher entropy, since its distribution is closer to
the equidistribution, which makes the piece harder to predict.
The exact entropy with history 1 can be computed as:

|E|
H(X) = — Z P(Ei—la Ez) ’ lOg?(PEi—l(Ei))

=2

where P(E;_1, E;) is the probability of seeing the pair of £;_; and E; while
Pg, (E;) is that of seeing E; limited to events seen success F;_;.
Using this | have computed the entropy of piece A and B to be:

Piece | History O | History 1
A 1.0 0.46
B’ 1.0 0.86

B’ has a much higher (almost doubled) entropy value than A’ when using
a history of 1. However, | believe that a history of 1 is still too small when it
comes to musical pieces, since many typical chord transition are longer than
this (see |Williams, 2008)).

1.2.4 Generalising History

In the previous section | discussed entropy values when using a history of 1. |
now present a generalised mathematical model supporting n-length history.
First, | generalise the usage of the function P:

Analysis of Music Corpora 14 Johan Sejr Brinch Nielsen
January 16, 2009

1.2. STATISTICAL METHODS CHAPTER 1

o P(ey,eq,...,6,) is the probability that the events ey, eq, ..., e, occur
sequentially.

® P.(e) is the probability that events ey, es,. .., e, is followed
by e,.

The probability of a single event is e,, is computed as the frequency:

{e=e,|e€ E}|

P(e,) = | E|

The probability of seeing e,, after a number of other events, e, es,...,¢€,_1,
is equal to the probability of seeing the preceding events times that of seeing
e, success these events:

P(ely €2,... 7671) = P<€17 €2,... 7en71) : Pel,ez,...,e",1<en)
The function P., ., ., ,(e,) is therefore:

P(ey,eq, ... e)

Pel,ez,...,en—l(en) - P(el €9 € 1)
, €2, .., Cn

Now that all functions are on a computational form, the entropy value with
a history of n is computed as:

H(X> - = Z P<€17 €, ... 7en> : IOgQ (Pel,eg,...,en,l (en))

e1,e2,....en€E

This is equivalent to computing the probability of the history times the
entropy of the events that follow the history:

H(X)=— Z P(ey,eq, ... e,) H({e | {e1,€9,...,en,€} € X})

€1,€2,...,en €L’

where E’ are the set of events that follow ey, es, ..., e,_1. Thisis how the
entropy is computed in the application.

1.2.5 Phenomenons

Since the entropy is computed from an assumptions that all possible 36 vari-
ations chords (Section [1.2.1]) could have been present in a work, a work with
a high number of different chords will be likely to have a high entropy value.

Analysis of Music Corpora 15 Johan Sejr Brinch Nielsen
January 16, 2009

1.2. STATISTICAL METHODS CHAPTER 1

An example of this is the following two pieces:
A c F C F

|

N — § ﬁ |
n C F G C
 ——— —

Even without regarding history, piece B obtain a higher entropy value (A
is 1.0 while B is 1.5), since it uses more chords. This does however seem fair,

since it does not repeat the chords as much as A.

Consider now the following two pieces:
pn C F C F

|

"4 [

= i
i

I
[

=

f Cl F Cl F Am Dm Am Dm
)’ A | | |
| |

B /£ ! i i g;

The two pieces repeats the chords an equal amount of times (2 each).
Piece B uses twice as many different chords than A, but is also twice as long.

The first 4 chords and the last 4 chords of B has the same entropy as A
(1.0). But when joined together, the entropy raises to 2.0. This phenomenon
has a rational explaination, since the entropy value is a measure of how many
bits is needed to represent the state of each chord. 2 bits are in fact needed,
to represent the choice from 4 different chords.

This phenomenon is also the reason why the following piece has the same

entropy value as A:
n c F C F C F C F

N e
HEE RS

Repeating the chords in A n times does not increase the entropy value.

e |

1.2.6 Drawbacks

In this section | discuss the drawbacks of using entropy as a measure of
predictability.
Concatinating two pieces with low entropy might yield one large piece with

high entropy (see Section [1.2.5]).

Analysis of Music Corpora 16 Johan Sejr Brinch Nielsen
January 16, 2009

1.2. STATISTICAL METHODS CHAPTER 1

Theorem:
If piece A and B do not share any chords and L4 > 0, L > 0 are their
respectable lengths:

Ly Ly

HA|B)> ——H(A)+ ——H
(A1 B) > A H(A) +

Proof:
Let the function F be defined as:

F(V,e):=—1- Z ¢+ P, -logy(c- P.)

ecV

since no chords are shared between A and B:

H(A| B) =
La Lp
F(A,————)+ F(B, ——————
(LA+LB) (LA+LB)
Looking at the first part yields:
L
FA, ———) =
(L+ LB)

LA LA
1. A P o log,(—2 . P) =
; FESTIC S

L
130 P (10gy(P) + loga(La) = loga(La + L)) > (L >0)

L
—§ P, -log,(P,) =
Li+ Ly 0g>(Fe)

ecA
Ly
La+Lp
Applying the same logic on the second part of the sum yields a lower bound
for the entropy of the joined piece:

La Lp
Lo+ Lp ‘H(A)—i_ La+ Lp ‘
When the A and B are of the same length, as the case of Section [I.2.5] the
entropy value is bounded by:

—1

H(A)

H(A|B) > H(B)

H(A|B) > 5 - (H(A) + H(B))

Which is the reason for the observed increased entropy.

Analysis of Music Corpora 17 Johan Sejr Brinch Nielsen
January 16, 2009

1.3. IDENTIFYING CHORDS CHAPTER 1

1.3 Identifying Chords

In this section | go through the routine of identifying a chord from its notes.
| achieve this using a recursive algorithm.

The main obstacle is to identify the root note. When the root note is
known, reconstruction of the chord is achieved in a bottom-up manor.

If the root note, r, is known, the remaining notes of the chord can be
found, by looking for a note, that is either one third, or one fifth higher than
r. When a new chord note is found, this method is recursively repeated on
the remaining notes, with the newly found note as root. Now, this assumed
that the root note was already known. In order to find the correct root note, |
try each note as the root note and pick the one that yields the longest chord.
This procedure is described in the following pseudo-code:

fun identify(root, chord, notes):
fifth = None
for note in notes:
if note is root+third:
return chord+{note}+identify(root, chord, notes\{note})
if note is root+fifths:
fifths = note
if fifths: # no third was found, use fifth
return chord+fifth+identify(root, chord, notes\fifths)
return chord

The identify function has a running time of O(n). However since the
root note is unknown, this function is called once per note, which leads to
a total running time of O(n?). This quadratic running time is not a prob-
lem since n (the number of unique notes) has an upper bound of 24 in this
context.

Analysis of Music Corpora 18 Johan Sejr Brinch Nielsen
January 16, 2009

Chapter 2

Implementation Details

[2.1] Overview

[2.2] Input Data

2.3 Generation of MusicXML

24 SharpEye Pro

[2.5] MusicXML Format
Improvement of Digitised Scores

7] Selected Database

19

2.1. OVERVIEW CHAPTER 2

2.1 Overview

In this section | present a brief overview of the implementation. For an in-
depth description, see appendix [C|

The following describes the steps needed to process music corpora from
an external source: statistical results from external scores:

Step 1. Scores and metadata are collected from external sources

Step 2. The
only

Step 3. The
Step 4. The
(a)
(b)
Step 5. The

original format of the scores are JPEG. However the OCR engines
read monochrome bitmap files. The first step is therefore to

convert the JPEG files into monochrome BMP files and

apply the OCR software and store the result as MusicXML.
chords are identified from the notes.
statistical results are computed. This is done by

computing the entropy of each work and

grouping the works by different criteria (e.g. category).

result can now be presented visually to ease the analysis task.

These steps are illustrated in the following diagram:

Gather work scores and metadats Convert [PG scores to MusicXMIL

.—%{ Scores and metadata } H]PG to BMP H BMP to MusicXML }%{ Identify Chords }

Apply Statistical Methods

%{ Visualise Results }%‘(Categorise works]é{ Compute Entropy]

Analysis of Music Corpora 20 Johan Sejr Brinch Nielsen

January 16, 2009

2.2. INPUT DATA CHAPTER 2

2.2 Input Data

In order to make any valuable statistical analysis | need to obtain access to
music corpora.

Each piece of music should be in a practical format, not just for the con-
venience of this project, but for anyone who chooses to reuse the application
code produced.

As of this writing, the most promising format for representing music is
MusicXML. It is defined on top of XML, which makes its structure easy to
parse using existing XML tools. Furthermore it is a popular format amongst
notation softwardl

2.2.1 Possible Music Databases

| have searched for an appropriate public domain music database that could
supply the musical data needed. In this section | briefly go through the
databases found.

2.2.2 International Music Score Library Project

The International Music Score Library Project (IMSLP)? hosts more than
13.000 works, including Brahm's complete Piano pieces, Mozart’'s complete
piano concerts and Corelli’s complete works. The project is primarily driven
by volunteers who submit scanned scores as PDF files. Because of this the
quality of the scores vary greatly.

2.2.3 Mozarteum

I\/Iozarteunﬁ is @ music project that focuses on Mozart only. Mozarteum is
a free electronic version of the Neue Mozart-Ausgabe, which is a complete
Mozart collection] The online version is a reproduction of the original scores,
created using notation software and then stored as JPEG files. Because the
scores have been digitally recreated, they are of a much higher quality than
those of IMSLP.

! fully supported by at least 25 music applications,
http://www.recordare.com/xml/software.html

2www.IMSLP.org

3http://dme.mozarteum.at

“nma.at

Analysis of Music Corpora 21 Johan Sejr Brinch Nielsen
January 16, 2009

2.2. INPUT DATA CHAPTER 2

2.2.4 Conclusion

Since none of the music databases hosts scores in the wanted MusicXML
format, | have to extract this information from the formats available (JPEG
and PDF).

None of the two mentioned music databases offers a packed version for
download, nor do they support this by requesiﬂ Because of this | have to
crawl the online web interfaces and collect the available metadata and scores.
Afterwards the MusicXML representation must be generated from these files.

This process requires a lot more work than if the files had been available
in MusicXML, but it is needed for the project to reach its goal of performing
statistical analysis on music corpora.

°I tried e-mail requests.

Analysis of Music Corpora 22 Johan Sejr Brinch Nielsen
January 16, 2009

2.3. GENERATING MUSICXML FROM SCORES CHAPTER 2

2.3 Generating MusicXML from Scores

In this section, | describe how | generate MusicXML from scores obtained
from an external music database. The scores can be in either BMP, TIFF or
PDF format, however converting between these formats can be done using
Image Magick?

2.3.1 Commercial Music OCR Software

In this section, | go over the commercial Music OCR (Optical Character
Recognition) software | tested. All these applications have the feature of
reading either a PDF, BMP or TIFF file, identifying the scores in the im-
age and outputting this information as MusicXML. Writing such an OCR
application is outside the scope of this project.

The OCR application should be able to:

e Generate MusicXML from a BMP, TIFF or PDF file
e Process multiple input files in an automated (non-interactive) manner

In the following table, | have summarized the features of each of the OCR
applications | have found:

Name PDF | BMP | TIFF | Automation
SharpEye Pro yes yes yes yes
SmartScore X Ultimate | yes | yes yes no
SmartScore Ultimate yes | yes yes no
PDFtoMusic Pro no yes yes yes

SharpEye Pro

SharpEye Pro generates MusicXML files from images containing notes. The
application is recommended by Recordare, the company behind MusicXML.
It includes a command line version for processing image files in an automatic
manner.

SmartScore X Ultimate

This application can convert PDF documents containing scanned notes to
MusicXML. However, the application lacks an automation feature.

bwww.imagemagick.org

Analysis of Music Corpora 23 Johan Sejr Brinch Nielsen
January 16, 2009

2.3. GENERATING MUSICXML FROM SCORES CHAPTER 2

PhotoScore Ultimate

This application can handle generation of MusicXML from PDF files, but
does not include any automation. Also, it uses the same recognition engine
as SharpEye Prd|

PDFtoMusic Pro

This application has an automation feature (batch mode), however it only
works on PDF files created by notation software, since it relies on meta
information written in the PDF documents. The files | have access to do not
contain this meta information, which renders this application useless.

Choosing a Music OCR engine

The only application that could satisfy the two functionality demands was
SharpEye Pro. It scans BMP images and has a command line version which
enables easy automation.

However, SharpEye's command line utility is dysfunctional. A bug in the
software renders it unable to output anything but SharpEye's own internal
format named MRO. An update to resolve this problem is available, however
the update contains another bug that makes the software unable to recognise
a registration. Left is the choice between a piece of software that outputs
poorly documentedﬂ MRO files or one that does not output at all.

Despite the bugs in SharpEye, | use this application to generate the needed
MusicXML. In Section 2.4} | describe the process | went through in order to
make it work.

2.3.2 Converting scores to BMP

Before | start generating the MusicXML information, | need to convert the
input scores into a format that is recognised by the Music OCR software that
will identify the actual notes.

In this process, | convert the input data into one common format. The
format is chosen to be one non-compressed monochrome bitmap (BMP) file
per page. The notation software has been optimised for scanned scores and
monochrome BMP files with a width of 2750 pixels seems to meet there
expectations of the software.

7SharpEye has been integrated into [...] PhotoScore Ultimate, http://www.visiv.co.uk/
8MRO documentation: http://www.visiv.co.uk/tech-mro.htm

Analysis of Music Corpora 24 Johan Sejr Brinch Nielsen
January 16, 2009

2.4. SHARPEYE PRO CHAPTER 2

2.4 SharpEye Pro

In this section, | describe how | made SharpEye Pro work in an automatic
way, in order to solve the problems described in Section [2.3.1]
There are three possible ways of making SharpEye Pro usable:

1. Write a program that will convert MRO files into MusicXML
2. Write a program that controls SharpEye through the GUI to

(a) read a MRO file and save it as MusicXML
(b) read a BMP file and save the results as MusicXML

2.4.1 Convert MRO files into MusicXML

The first possibility | chose to test was that of writing a program that would
parse the MRO files and output MusicXML. If this would work, | could still
use the automation possibilities of the command line version.

The MRO file format

The MRO file format is designed to be easily parsed by a C program. Because
of this all structures are in a format that resembles nested C-Arrays.

An example of this is the following “clef” structure from the MRO documen-
tation:

clef

{
shape Treble centre 29,34 pitchposn 2 }

[I T

where “clef” is the name and “shape”,
ments.

The structure of an MRO file is easy to parse, however the semantics of
the values are not clearly documented. One example is the positioning system
used. In the MRO documentation the units used for position coordinates are
described by:

Treble” and “pitchposn” are its ele-

“ All graphical coordinates increase to the right and down. They are writ-
ten as row,column pairs, ie y,x. There are 16 units between stave lines in the

Analysis of Music Corpora 25 Johan Sejr Brinch Nielsen
January 16, 2009

2.4. SHARPEYE PRO CHAPTER 2

output, at least for the current version. Nearly all coordinates are in these
units. Exceptions will be pointed out. “

The following MRO snippet, representing a chord, shows an example of
how the positioning coordinates are used (from the documentation):

chord

{

virtualstem False stemup True stemslash False
tuplettransform 1/1 tupletID -1 nofmmrestbars O
accent False staccato False marcato False staccatissimo False tenuto False pause
naugdots 1 nflags 0 flagposn -31,166 headend -2 beam
{

id 1 nofnodes 1 nofleft O nofright 0 }

notes

{

nof 1

note

{

shape Minim staveoffset O p -2 accid None accid_dc O normalside True }

+
+

According to the documentation, the “flagposn” element should note the
position of the chord. But where exactly is the position of y = —317

Analysis of Music Corpora 26 Johan Sejr Brinch Nielsen
January 16, 2009

2.4. SHARPEYE PRO CHAPTER 2

The documentation describes this element as: (r is y and cis z):

“[r,c] is the position of the flag or beam end of the stem on this chord. In
the case of a stemless note (rest, breve, semi-breve) the ¢ value is still valid,
and is the centre of the note, chord or rest. “

This does not say anything about what point the coordinates are relatively
computed from. When describing an unrelated chord, the documentation
reads:

“[...] the flag position of this chord is [...] units from the left of the
stave's top-left.

Apparently, the coordinates should be relative to the stave’s top left. How-
ever, this position does not match the graphical position of the note. Since
| could not find any usable documentation on the semantics of the MRO
format?| | decided that writing a parser for this format would take too much
time.

Controlling Windows Applications

Instead of parsing the MRO files, | decided to write a macro that would
control the SharpEye Pro application by emulating a user. | use Visual Basic
Scripting for all macro programming, since it provides easy access to the
needed parts of the Windows API.

Below is an example of a Visual Basic Scripting (VBS) script:

Dim WshShell

Set WshShell = WScript.CreateObject("WScript.Shell")
WshShell.run(*'sharpeye.exe’")

WshShell. AppActivate(**SharpEye2"")
WshShell.SendKeys ‘‘Hello SharpEye"’

This script runs the SharpEye application, locates its main window and
sends the keystrokes “Hello SharpEye” to it. The macros | use are able to
open SharpEye and perform the follow actions:

1. Open an image file, run OCR recognition on it and save the result as
MusicXML.

2. Open an MRO file and save it's content as MusicXML

°I requested such by email, but never received a reply

Analysis of Music Corpora 27 Johan Sejr Brinch Nielsen
January 16, 2009

2.4. SHARPEYE PRO CHAPTER 2

| tried both ways of automating the MusicXML convertion process and
found the latter to be the most stable. Apparently it shows that controlling
a Windows Application is an error prone task that might result it:

1. The wrong window being in focus (therefore receiving the input)

2. The window needed not being opened

3. The script being out-of-sync with the actual convertion process

4. One or more key-presses not being received by the targeted window

On top of these common faults, other errors might occur that are simpley
not detected, since no error handling is possible. Because of this, | am using
the simplest possible VBS script in the application.

However, it is possible to use the first approach and use it on other ap-
plications than just SharpEye Pro. In order to ease such a task, | have made
a VBS script that, given an array of window titles and keys, finds the correct
window and sends the keys to it, simplifying the task significantly. Using this
script, the example above could be simplified to:

Keys = Array(

"|SharpEye2/Registered to"", “‘Hello SharpEye”
)

The script waits for a window with a title starting with either “SharpEye2”
or “Registered to”, sets it in focus and sends the keys “Hello SharpEye” to it.
This generalised macro also supports unconditional pausing or pausing until
a specific window to occur (like the pop-up that occurs when SharpEye has
finished its recognition).

Analysis of Music Corpora 28 Johan Sejr Brinch Nielsen
January 16, 2009

2.5. MUSICXML CHAPTER 2

2.5 MusicXML

MusicXML is a popular music notation format by Recordare, that is sup-
ported by many notation applications. The goal of MusicXML is to provide
an interchangeable format for score notation. The format allows two ways of
ordering data inside the file:

1. Partwise is parts listing measures
2. Timewise is measures listing parts

The software used in this project handles files in the partwise format, how-
ever the other case can be handled using Recordare’'s XSL files for converting
from one format to the other.

Analysis of Music Corpora 29 Johan Sejr Brinch Nielsen
January 16, 2009

2.5. MUSICXML CHAPTER 2

2.5.1 A Simple Example

Below is a small partwise MusicXML sample of a C note in C-major :

<7xml version="1.0" encoding="UTF—-8" standalone="no"7>
<IDOCTYPE score—partwise PUBLIC
"—//Recordare//DTD_ MusicXML,1.1,Partwise//EN"
"http://www.musicxml.org/dtds/partwise.dtd" >
<score—partwise version="1.1">
<part—list>
<score—part id="P1">
<part—name>Music</part—name>
</score—part>
</part—list>
<part id="P1">
<measure number="1">
<attributes>
<divisions>1</divisions>
<key>
<fifths>0< /fifths>
< /key>
<time>
<beats>4</beats>
<beat—type>4< /beat—type>
</time>
<clef>
<sign>G</sign>
<line>2</line>
</clef>
< /attributes>
<note>
<pitch>
<step>C</step>
<octave>4< /octave>
</pitch>
<duration>4</duration>
<type>whole< /type>
</note>
</measure>
</part>
< /score—partwise>

Ohttp://www.recordare.com/xml/helloworld.html

Analysis of Music Corpora 30 Johan Sejr Brinch Nielsen
January 16, 2009

2.5. MUSICXML CHAPTER 2

The first score-partwise tag indicates that this MusicXML lists parts
first. If this tag had been score-timewise the file would have been in the
timewise format.

2.5.2 Parts

The part-1list tag contains a list of parts in the score. Each part has an id
together with various attributes listed as tags. Each part contains a list of
measures as child tags.

2.5.3 Measures

Each measure can optionally contain attributes describing the key, the time
unit etc. The key is the current key signature, represented by its number of
flats or sharps. Positive counts are sharps, while negative counts are flats. In
the example above the key is C-major, which has no flats nor sharps, so the
key attribute is 0. Had the key been C-minor the key attribute would have
been —3.

Since MusicXML is a notation format it also contains some purely nota-
tional information, such as the clef tag, that describes the position of the
clef. Such notational tags are of no interest for this project and are therefore

As mentioned earlier measures can optionally contain the time unit. If no
timing is given, the timing unit from the previous measure is used. The unit is
defined by the divisions tag which states the number of divisions a quarter
can be divided into. Each duration is then noted as a number of divisions.
Each note tag has a duration stating the notes length in such divisions.
Knowing the number of divisions the actual length, [, can be computed as:

1 durations

1
-+ —————— duration= —————
4 divisions 4 .divisions

l:

2.5.4 Notes and Chords

The note tag contains a pitch tag describing the tone together with a
duration tag describing the length in divisions. If the note is affected by
either a flat or a sharp, the pitch tag will contain an alter tag describing the
alternation (e.g. —1 for a flat), no matter if the alternation is local or global
(part of the key signature or not).

Notes in MusicXML contains no starting time. Instead, the current time
of an internal clock is used. The clock starts at zero and updates by the

Analysis of Music Corpora 31 Johan Sejr Brinch Nielsen
January 16, 2009

2.5. MUSICXML CHAPTER 2

duration for each note, allowing a new note to start where the previous note
ended. The only exception of this is if the new note contains a chord tag.
In this case, the clock must rewind to the beginning of the previous note, so
the new note can be added at the same starting time.

To give the composer full control, MusicXML supports a forward and
backup tag. Using these tags it is possible to change the internal clock by
any amount in any direction. In case of a noted rest, MusicXML supports
notes with an empty rest tag. This can be used where the rest is part of the
notation and forward is inappropriate (its result being an invisible rest).

Because of the internal state, parsing MusicXML is not as simple as
reusing an existing XML parser. The MusicXML parser will have to track
of the internal clock at all times.

Notes can also represent percussion notation. In such cases, the note
contains an unpitched tag, indicating that it represents a sound rather than
a tone. Percussion notation is not interesting in the context of this project
and such notes are therefore ignored.

2.5.5 Infelicities of MusicXML

There are some pitfalls of MusicXML. There exist cases that this format is not
suited for. One obvious case is to extract non-continuous information. For
example to search for all C-notes and return there position in the measure they
were found in. This is a complicated task because all positions in MusicXML
is relative to the previous note.

Below is the steps needed to complete the task:

1. Find all notes that contains a pitch, where step and alter combined
gives a “C".
2. For each such note, scan backwards in the measure in order to compute

the position in divisions.

3. Scan backwards until an attribute containing the divisions tag is
found in a measure.

4. Compute the absolute position.

The problem here is the relative timings that MusicXML uses combined
with its attempt to reduce redundancy by reusing previous attributes. A
backward scan is only needed because the positional information is listed in
an unknown measure.

Analysis of Music Corpora 32 Johan Sejr Brinch Nielsen
January 16, 2009

2.5. MUSICXML CHAPTER 2

Another downside of this design is that one misplaced note will shift the
positions all previous notes in the measure.

The problem of positioning could have been solved by adding a start tag
to each note. This tag would define where in the measure the current note
would start.

But even with absolute positions a backward scan is still required to find
the divisions number, that can be set anywhere in any measure.

This problem could be solved by choosing a simpler unit for durations. A
straight forward unit would be to use fractions, just as the original sheets.
This can be achieved by replacing the current duration with:

duration/(4 - divisions)

which will be the new fraction (e.g. 3/4).

If MusicXML used both absolute positions and independent durations it
would be easy to extract the position. However other information (e.g. key)
is still located in some previous measure. This information should be explicitly
stated in each measure to avoid misinterpretation.

According to Recordare, they chose the divisions model, because the MIDI
format uses thid!T] However, they also claim MusicXML to be an interchange-
able format, that prioritises clarity before compactnes. But absolute po-
sitions and durations, together with explicit attributes would have made this
format much easier to interchange.

http://recordare.com/xml/musicxml-tutorial.pdf
12 www.recordare.com/xml/faq.htm

Analysis of Music Corpora 33 Johan Sejr Brinch Nielsen
January 16, 2009

2.6. IMPROVING THE QUALITY OF DIGITISED SCORES CHAPTER 2

2.6 Improving the Quality of Digitised Scores

In this section, | present a simple method for improving the quality of digitised
scores. The quality of such scores depends mainly on the original source and
how this has been treated. Digitising a score by scanning a sheet of music
IS an error prone process that can result in added noise and gaps. | will try
to improve the performance of popular OCR software when dealing with such
scanned scores.

Below is an example of the first half of a measure from a scanned scord™}

Many details are missing due to gaps, especially from the arms and notes.
These parts are crucial for the OCR which can detect just 19 out of 24 notes
in this measure. Also, SharpEye reports a total of 18 rhythm warnings on the

page.

2.6.1 Extending segments vertically

A simple method to improve OCR performance is to close the gaps by stretch-
ing each pixel horizontally. This approach can be formalised as:

p;:,y = DPay A Pz y+1

where p, , is true iff the pixel at (x,y) is set (white) and A is the binary and
operator. The method blackens all pixels that are either black or have a black
pixel beneath it.

Running this method on the example from the previous section yields:

13Bach’s “Wie schon leuchtet der Morgenstern”, BWV 1

Analysis of Music Corpora 34 Johan Sejr Brinch Nielsen
January 16, 2009

2.6. IMPROVING THE QUALITY OF DIGITISED SCORES CHAPTER 2

o A g S

Although 1568 pixels have been flipped from white to black, there are still
large gaps in the score and the improvement is small. The OCR software now
recognises 18 notes in the measure, with a total of 17 rhythm warnings. A
small improvement.

| now expand the procedure by another pixel, hence using:

pg,y = Pay N\ Poy+1 N\ Do y+2

After flipping a total of 3025 pixels, the computation yields:

The notes are now more visible, however the double bars have merged
into one. The OCR software recognises 18 notes, with a total of 23 rhythm
warnings. This simple preprocessing does not seem to have any significant
effect on the OCR software.

Analysis of Music Corpora 35 Johan Sejr Brinch Nielsen
January 16, 2009

2.7. DATABASE SELECTION CHAPTER 2

2.7 Database Selection

Based on the previous discussions of possible music databases and on my
discussion on digitised scores, | have chosen to use Mozarteum as music
database and will focus on this in the remainder of this paper.

The primary reason is the appealing quality of the scores hosted by Mozar-
teum. Despite my attempt to improve the quality of the user scanned scores
at IMSLP, they are simply no match for the digitally generated scores at
Mozarteum.

Although Mozarteum is listed as a complete collection of Mozart works, |
was able to locate just 571 Mozart works out of a total of 626 possible. This
collection should be large enough to conclude upon the works of Mozart, but
choosing Mozarteum excludes any conclusions regarding music in general.

Analysis of Music Corpora 36 Johan Sejr Brinch Nielsen
January 16, 2009

Chapter 3

Statistical Analysis

B 1 Methods
32 Results
3.3 Conclusion

37

3.1. METHODS CHAPTER 3

3.1 Methods

In this section, | discuss the statistical methods | use to investigate trends in
the chord progressions.

3.1.1 Interpolation

| use first degree polynomial interpolation, aka least square fitting (Lancaster
and Salkauskas|, [1986)), to investigate whether the entropy in a region is raising
or lowering.

| fit a first degree polynomial to a set of data points in the following way:

1. A first degree polynomial has the form a - = + b, where a and b are
constants.

2. The deviation between such a line and the data points in X is:

Z ((a-z;+0b) _yi)2

x5,y €X

3. To find the best fit, | minimise the deviation. This is done by solving
the following optimisation problem:

Minimise Z ((a-z;+0) - yi)2

@i,y €X

4. Such a quadratic convex optimisation problem can be solved using a
Quadratic Programming library like cvxopt for Python or by implement-
ing one of several methods for minimizing quadratic separable functions
(e.g. Subgradient Method, (Heath, 2001))).

3.1.2 Correlation

Correlation is used to indicate the linear relationship between two variables.

To compute the correlation, | have used the Pearson product correlation
coefficient. Let Z be a set of pairs x,y. The correlation between x and y can
be computed as:

N [Zx,yeZ'x Y] — [Zx,yEZ z] - [Ez,yEZ Y]
(N2 = (3 2)?|[N -2y — ()]

T =

Analysis of Music Corpora 38 Johan Sejr Brinch Nielsen
January 16, 2009

3.1. METHODS CHAPTER 3

The correlation value is closely related to the linear fitting described in
Section [3.1.1} since the correlation value is an indicator for the linearity in
the data points.

| will assume a linear correlation when the correlation coefficient is higher

than 0.3 or lower than —0.3[}]

!These values have been suggested by Jakob Grue Simonsen, supervisor on the project

Analysis of Music Corpora 39 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS CHAPTER 3

3.2 Results

In this section, | introduce and discuss the statistical results. As a start
hypothesis, | assume that there is no correlation between entropy and any
other property (e.g. year, length).

The categories used are equal to those of Mozarteum. In tables, the
category names are shortened to ease readability (full names can be found in
Appendix |A]).

When discussing correlation coefficients, | use the terms weak and strong
as a measure of the coefficient’s absolute distance from zero. Coefficients
below 0.3 are weak, while those of 0.3 or higher are strong.

| denote the mass of a group as the amount of works in the group (e.g.
a specific category).

3.2.1 Ordered by Year

In this section, | investigate possible correlations between production year and
entropy. Specifically, | test the hypotheses:

Hypothesis A: There is no relationship between production year and en-
tropy, i.e. the correlation of these values are below 0.3.

Hypothesis B: The relationship between production year and entropy val-
ues are constant over time, i.e. deviation of such is below 10 percent.

Analysis of Music Corpora 40 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS CHAPTER 3

Without History

The Figure below suggests no falsification of Hypothesis A, since no correla-
tion between entropy values and production year seems to exist. In fact, the
entropy values are so high, they seem almost constant.

45

40

ikt i l ‘ il 'N

w
=

"'omﬁﬁﬁﬁ 6 @86 0 non kel i T 76 T E) 80 &8) 5] B B85 B5 & 8

Figure 3.1: Entropy value ordered by year

The correlation coefficient is 0.061, which is too weak to falsify the hy-
pothesis. It seems the production year does not influence the complexity when
disregarding history.

Analysis of Music Corpora 41 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS

CHAPTER 3

To test Hypothesis B | split Mozart's life into three time periods:

1. childhood:

Mozart's first pieces, including all works he composed before turning 17

years of age.

2. early adulthood:

The period 1773 - 1781 where he worked under various employees,

however mainly the Salzburg Court.

3. late adulthood:

The period 1782 to 1791 which stretches from Mozart's move to free-
lance work only and to his death in 1791.

| now list the correlation between production year and entropy in each of

the three periods:

Period Mass | Correlation
1756 - 1772 | 137 0.30
1773 - 1781 | 231 —0.080
1782 - 1791 | 267 0.045

The correlation coefficient in works produced in Mozart's early years is
much higher (0.255) than those of later works. The deviation is 0.025 (28.3

percent), falsifying Hypothesis B.

Analysis of Music Corpora 42

Johan Sejr Brinch Nielsen

January 16, 2009

3.2. RESULTS CHAPTER 3

History of 1

In this section, | investigate Hypothesis A and B using a history of 1.

L=

gl

"'Omfﬁ'ﬁ 67 6860 0 n n ki] T 6 T8 i) 8 & 7] 8B B B B &7]

Figure 3.2: Entropy value ordered by year

The correlation coefficient is now 0.011, which is too weak to falsify Hy-
pothesis A. As in Section [3.2.1} | test Hypothesis B by listing the correlation
in different periods:

Period Mass | Correlation
1756 - 1772 | 137 0.42
1773 - 1781 | 231 —-0.14
1782 - 1791 | 267 0.052

Once again, a significant correlation shows in the early years, but not in the
later. All the coefficients has grown stronger, especially in the early adulthoot
(75 percent), however the only significant correlation is in to be seen in the
childhood. Also, the correlation in this period is still by far the strongest. The
deviation is now 0.054 (48.8 percent), hence falsifying Hypothesis B.

Analysis of Music Corpora 43 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS CHAPTER 3

History of 2

In this section, | investigate Hypothesis A and B using a history of 2.

30

‘ M]

“'Om 666 6 6860 0 n n ki] T 6

ll“'n 1

|

Figure 3.3: Entropy value ordered by year

The correlation between production year and entropy values is now —0.038.
Once again, much too weak to falsify Hypothesis A.
As in the previous sections, | list the correlation in different time periods:

Period Mass | Correlation
1756 - 1772 | 137 0.46
1773 - 1781 | 231 —0.13
1782 - 1791 | 267 0.084

Once again, the childhood period is the only significant correlation and
is still by far the strongest. The deviation is now 0.059 (43.1 percent); once
again, falsifying Hypothesis B.

Analysis of Music Corpora 44 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS CHAPTER 3

3.2.2 Ordered by Category

In this section | investigate possible correlations between work category and
entropy. Specially, | test the following two hypothesis:

Hypothesis C: There is no relationship between a work’s category and it’s

entropy, i.e. the averages of entropy values in categories do not vary more
than 1.0.

Hypothesis D: The correlation between production year and entropy is
independent of category, i.e. the vary of such is below 10 percent.

Analysis of Music Corpora 45 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS CHAPTER 3

Without History

In this section, | investigate Hypothesis C and D without using any history.

45

r
40

HW'N'IIW i \"'.,,ﬂ[',vllf H
| W ‘ |

ik
/'l

30

B 9 101 L1315 i) 18 19 EiFi M 1ERT] 0 32 33

Figure 3.4: Entropy value ordered by category

Again, the entropy values are high when not using history. There is no
clear global correlation, however there seems to be hints of correlation within
specific categories.

Analysis of Music Corpora 46 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS CHAPTER 3

To test Hypothesis C, | compute the average entropy for each category:

Index | Category Mass Period Average
0 arias, scenes, v. .. 53 | 1765 - 1791 3.52
3 canons 21 | 1772 - 1788 2.85
4 cassations, sere. .. 24 | 1766 - 1787 3.76
5 concertos for on. .. 24 | 1773 -1791 3.75
6 concertos for on. .. 23 | 1774 - 1791 3.72
7 dances 37 | 1769 - 1791 3.53
8 divertimentos an. .. 12 1773 - 1782 3.56
12 marches 13 | 1769 - 1788 3.52
13 masses 22 | 1766 - 1782 3.59
15 operas 24 | 1767 - 1791 4.02
18 part songs 11 1765 - 1788 3.31
19 piano pieces 23 | 1761 - 1791 3.31
20 piano sonatas 21 1774 - 1789 3.64
21 piano trios 18 | 1764 - 1791 3.70
25 smaller pieces o. .. 17 | 1766 - 1791 3.56
26 sonatas and vari. .. 32 | 1764 - 1788 3.56
27 sonatas for orga. .. 17 | 1767 - 1780 3.36
28 songs 25 | 1772 - 1791 3.15
29 string quartets 23 | 1770 - 1790 3.72
33 symphonies 50 | 1764 - 1788 3.72
34 variations for p... 16 | 1766 - 1791 3.28

The highest value is 4.02 (operas), while the lowest is 2.85 (canons). The
average is 3.53 and the deviation is 0.25, which is 13.4 percent. The deviation
is just over 10 percent which falsifies Hypothesis C.

Analysis of Music Corpora 47 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS

CHAPTER 3

To investigate Hypothesis D, | list the correlation between year and entropy
in each categonf

Inde Category Mass Period Correlation
0 arias, scenes, V... 53 | 1765 - 1791 -0.19
3 canons 21 1772 - 1788 -0.29
4 cassations, sere. .. 24 | 1766 - 1787 -0.019
5 concertos for on. . . 24 | 1773 - 1791 0.42
6 concertos for on. .. 23 | 1774 - 1791 0.25
7 dances 37 | 1769 - 1791 -0.032
8 divertimentos an. .. 12 | 1773 - 1782 0.72
12 marches 13 | 1769 - 1788 -0.22
13 masses 22 | 1766 - 1782 0.10
15 operas 24 11767 - 1791 0.34
18 part songs 11 | 1765 - 1788 0.069
19 piano pieces 23 | 1761 - 1791 0.67
20 piano sonatas 21 | 1774 - 1789 0.35
21 piano trios 18 | 1764 - 1791 0.68
25 smaller pieces o. .. 17 | 1766 - 1791 0.23
26 sonatas and vari. .. 32 | 1764 - 1788 0.081
27 sonatas for orga. .. 17 | 1767 - 1780 0.065
28 songs 25 | 1772 -1791 -0.068
29 string quartets 23 | 1770 - 1790 0.46
33 symphonies 50 | 1764 - 1788 0.46
34 variations for p. .. 16 | 1766 - 1791 0.47

Several categories has a correlation coefficient above 0.30 (marked with
bold). Especially divertimentos and serenades for wind instruments (number
8). The average is 0.22 and the deviation 0.29 (135.7 percent). This implies
that the correlation is not constant over categories, which falsifies Hypothesis
D. A more interesting observation is perhaps, that categories that has a pos-
itive correlation, dominates the list (15 against 6). Also, all of the significant
correlations are positive.

20nly categories with at least 10 works is included

Analysis of Music Corpora

48

Johan Sejr Brinch Nielsen

January 16, 2009

3.2. RESULTS CHAPTER 3

History of 1

In this section, | investigate Hypothesis C and D using a history of 1.

0 |l i
i Iw | | M H m
‘\

L=

IH)r'

|

B 9 101 L1315 jio 18 1o 02 DM 1EeT ® 0 0 32 Ex]

Figure 3.5: Entropy value ordered by category

The entropy values seem more distinct, than in the previous section.

Analysis of Music Corpora 49 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS CHAPTER 3

To test Hypothesis C, | compute the average entropy for each category:

Index | Category Mass Period Average
0 arias, scenes, v. .. 53 | 1765 - 1791 2.47
3 canons 21 1772 - 1788 1.84
4 cassations, sere. .. 24 | 1766 - 1787 2.94
5 concertos for on. .. 24 | 1773 - 1791 2.93
6 concertos for on. .. 23 | 1774 - 1791 2.91
7 dances 37 | 1769 - 1791 2.52
8 divertimentos an. .. 12 | 1773 - 1782 2.901
12 marches 13 | 1769 - 1788 2.40
13 masses 22 | 1766 - 1782 2.66
15 operas 24 | 1767 - 1791 2.98
18 part songs 11 | 1765 - 1788 2.21
19 piano pieces 23 | 1761 - 1791 2.29
20 piano sonatas 21 1774 - 1789 2.81
21 piano trios 18 | 1764 - 1791 2.89
25 smaller pieces o. .. 17 | 1766 - 1791 2.54
26 sonatas and vari. .. 32 | 1764 - 1788 2.61
27 sonatas for orga. .. 17 | 1767 - 1780 2.28
28 songs 25 | 1772 - 1791 1.82
29 string quartets 23 | 1770 - 1790 2.95
33 symphonies 50 | 1764 - 1788 2.93
34 variations for p... 16 1766 - 1791 2.48

The average is now 2.59 and the deviation 13.5 percent, which falsifies
Hypothesis C. An interesting observation is that, as with no history, operas
score highest. Songs are now the lowest, closely followed by canons.

Analysis of Music Corpora 50 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS

CHAPTER 3

To investigate Hypothesis D, | list correlation between year and entropy

for each categoryf¥| when using a history of 1:

Index | Category Mass Period Correlation
0 arias, scenes, v. .. 53 | 1765 - 1791 -0.098
3 canons 21 1772 - 1788 -0.22
4 cassations, sere. .. 24 | 1766 - 1787 -0.23
5 concertos for on. .. 24 | 1773 - 1791 0.31
6 concertos for on. .. 23 | 1774 - 1791 0.25
7 dances 37 | 1769 - 1791 -0.15
8 divertimentos an. .. 12 | 1773 - 1782 0.65
12 marches 13 | 1769 - 1788 -0.05
13 masses 22 1766 - 1782 0.12
15 operas 24 1767 - 1791 0.044
18 part songs 11 | 1765 - 1788 0.44
19 piano pieces 23 1761 - 1791 0.70
20 piano sonatas 21 1774 - 1789 0.12
21 piano trios 18 | 1764 - 1791 0.84
25 smaller pieces o. .. 17 | 1766 - 1791 -0.032
26 sonatas and vari. .. 32 | 1764 - 1788 0.17
27 sonatas for orga. .. 17 | 1767 - 1780 0.42
28 songs 25 | 1772 - 1791 0.11
29 string quartets 23 | 1770 - 1790 0.57
33 symphonies 50 | 1764 - 1788 0.38
34 variations for p... 16 | 1766 - 1791 0.29

An interesting observation, is that divertimentos and serenades for wind
instruments (number 8), which showed the highest correlation without history
(Section has now dropped to 0.65. On the other hand, piano pieces
and piano trios has raised.

The average is now 0.22 and the deviation 0.30 (135.8 percent), which
again falsifies Hypothesis D. All significant correlation coefficients are still
suggesting positive relationships and the total number of positive coefficients
still outnumber that of negative coefficients (15 against 6).

4Only categories with at least 10 works is included

Analysis of Music Corpora

51

Johan Sejr Brinch Nielsen

January 16, 2009

3.2. RESULTS CHAPTER 3

History of 2

In this section, | investigate Hypothesis C and D using a history of 2.

30

=}

B 9 101 L1315 i) 18 19 EiFi M 1ERT

Figure 3.6: Entropy value ordered by category

Once again, raising the history length seems to raise the contrast as well.

Analysis of Music Corpora 52 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS

CHAPTER 3

To test Hypothesis C, | compute the average entropy for each category:

Index | Category Mass Period Average
0 arias, scenes, v. .. 53 | 1765 - 1791 1.57
3 canons 21 1772 - 1788 0.86
4 cassations, sere. .. 24 | 1766 - 1787 2.14
5 concertos for on. .. 24 | 1773 -1791 2.24
6 concertos for on. .. 23 | 1774 - 1791 2.12
7 dances 37 | 1769 - 1791 1.42
8 divertimentos an. .. 12 1773 - 1782 2.06
12 marches 13 | 1769 - 1788 1.26
13 masses 22 | 1766 - 1782 1.96
15 operas 24 | 1767 - 1791 2.47
18 part songs 11 | 1765 - 1788 1.04
19 piano pieces 23 | 1761 - 1791 1.03
20 piano sonatas 21 1774 - 1789 1.61
21 piano trios 18 | 1764 - 1791 1.74
25 smaller pieces o. .. 17 | 1766 - 1791 1.65
26 sonatas and vari. .. 32 | 1764 - 1788 1.38
27 sonatas for orga. .. 17 | 1767 - 1780 1.33
28 songs 25 | 1772 - 1791 0.74
29 string quartets 23 | 1770 - 1790 2.00
33 symphonies 50 | 1764 - 1788 2.06
34 variations for p... 16 1766 - 1791 1.40

The average is 1.62 and the deviation 0.47 (29.1 percent), which falsifies
Hypothesis C, once more. Operas still score highest, while songs score lowest.

Analysis of Music Corpora

53

Johan Sejr Brinch Nielsen

January 16, 2009

3.2. RESULTS

CHAPTER 3

To test Hypothesis D, | list the correlation between year and entropy for
each categoryf’] when using a history of 2:

Index | Category Mass Period Correlation
0 arias, scenes, v. .. 53 | 1765 - 1791 -0.0076
3 canons 21 1772 - 1788 -0.27
4 cassations, sere. .. 24 | 1766 - 1787 -0.017
5 concertos for on. .. 24 | 1773 - 1791 -0.039
6 concertos for on. .. 23 | 1774 - 1791 0.10
7 dances 37 | 1769 - 1791 -0.026
8 divertimentos an. .. 12 | 1773 - 1782 0.77
12 marches 13 | 1769 - 1788 -0.066
13 Mmasses 22 1766 - 1782 0.27
15 operas 24 1767 - 1791 -0.011
18 part songs 11 | 1765 - 1788 0.61
19 piano pieces 23 1761 - 1791 0.58
20 piano sonatas 21 | 1774 - 1789 -0.20
21 piano trios 18 | 1764 - 1791 0.71
25 smaller pieces o. .. 17 | 1766 - 1791 -0.024
26 sonatas and vari. . . 32 | 1764 - 1788 0.36
27 sonatas for orga. .. 17 | 1767 - 1780 0.41
28 songs 25 | 1772 - 1791 -0.19
29 string quartets 23 | 1770 - 1790 0.71
33 symphonies 50 | 1764 - 1788 0.44
34 variations for p... 16 | 1766 - 1791 0.16

Several of the correlations are higher than the significant 0.3, including
piano pieces, sonates and symphonies. The average is 0.20 and the deviation
0.32 (159.0 percent). This is far higher than the 0.10 percent threshold, which
falsifies Hypothesis D. Once more, all significant coefficients are positive,
however the total number of positive relationships has lowered from 15 to

11, and thus balancing the score (11 against 10).
coefficients are however very weak.
yields a score of 11 positive against 4 negative.

Many of the negative

Ignoring coefficients weaker than 0.05

positive coefficients is stronger than 0.05.

>Only categories with at least 10 works is included

Analysis of Music Corpora

54

As can be seen, all the

Johan Sejr Brinch Nielsen

January 16, 2009

3.2. RESULTS CHAPTER 3

3.2.3 Ordered by Length

In this section | investigate possible correlations between the entropy and the
number of chords used in a work. Specifically, | test the following hypotheses:

Hypothesis E: There is no relationship between the length of a work and
it's entropy value, i.e. the correlation of such is below 0.3.

Hypothesis F: There is no relationship between the category of a work
and it's length, i.e. the average work length in the categories do not vary
more than 10 percent.

Hypothesis G: The correlation between production year and work length is
constant, i.e. the correlation between such is does not vary between category
with more than 0.15.

Analysis of Music Corpora 55 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS CHAPTER 3

Without History

In this section, | investigate Hypothesis E, F and G without the use of history.

45

40 [

e e jirm

=1

|| il [' i H! I IW

Figure 3.7: Entropy value ordered by the number of chords

The correlation coefficient is 0.38, which is a bit over the significance
threshold, which falsifies Hypothesis E.

Analysis of Music Corpora 56 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS CHAPTER 3

To test Hypothesis F, | compute the average length for each category:

Index | Category Mass Period Chords
0 arias, scenes, v. .. 53 | 1765 - 1791 749
3 canons 21 | 1772 - 1788 110
4 cassations, sere. .. 24 | 1766 - 1787 2406
5 concertos for on. .. 24 | 1773 - 1791 3330
6 concertos for on. .. 23 | 1774 - 1791 2351
7 dances 37 | 1769 - 1791 549
8 divertimentos an. .. 12 1773 - 1782 1609
12 marches 13 | 1769 - 1788 324
13 masses 22 | 1766 - 1782 3118
15 operas 24 | 1767 - 1791 | 14269
18 part songs 11 | 1765 - 1788 199
19 piano pieces 23 | 1761 - 1791 300
20 piano sonatas 21 1774 - 1789 667
21 piano trios 18 | 1764 - 1791 870
25 smaller pieces o. .. 17 | 1766 - 1791 948
26 sonatas and vari. .. 32 | 1764 - 1788 445
27 sonatas for orga. .. 17 | 1767 - 1780 343
28 songs 25 | 1772 - 1791 101
29 string quartets 23 | 1770 - 1790 1457
33 symphonies 50 | 1764 - 1788 1813
34 variations for p... 16 | 1766 - 1791 364

An interesting observation here, is that operas, that had the highest aver-
age entropy, also has the highest average length, while songs, with the lowest
average entropy, has the lowest average length.

The average is 1729.62 while the deviation is 2964.67 (41.7 percent), which
falsifies Hypothesis F.

Since this computation is independent of entropy, it will not change with
the history length.

Analysis of Music Corpora 57 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS

CHAPTER 3

To test Hypothesis G, | compute the correlation between production year
and work length:

Index | Category Mass Period Correlation
0 arias, scenes, v. .. 53 1765 - 1791 0.065
3 canons 21 1772 - 1788 -0.62
4 cassations, sere. .. 24 1766 - 1787 0.19
5 concertos for on. .. 24 | 1773 - 1791 -0.55
6 concertos for on. .. 23 | 1774 - 1791 0.036
7 dances 37 1769 - 1791 -0.026
8 divertimentos an. .. 12 1773 - 1782 0.76
12 marches 13 1769 - 1788 0.16
13 masses 22 | 1766 - 1782 0.16
15 operas 24 1767 - 1791 0.11
18 part songs 11 | 1765 - 1788 0.33
19 piano pieces 23 | 1761 - 1791 0.46
20 piano sonatas 21 1774 - 1789 0.030
21 piano trios 18 | 1764 - 1791 0.70
25 smaller pieces o. .. 17 | 1766 - 1791 -0.093
26 sonatas and vari. .. 32 1764 - 1788 0.47
27 sonatas for orga. .. 17 | 1767 - 1780 0.53
28 songs 25 | 1772 - 1791 -0.32
29 string quartets 23 | 1770 - 1790 0.79
33 symphonies 50 | 1764 - 1788 0.58
34 variations for p... 16 1766 - 1791 0.29

The average is 0.21 and the deviation 0.35 (167.2 percent). This deviation
falsifies Hypothesis G, since the correlation do change over category.

Since this computation is independent of entropy, it will not change with
the history length.

Analysis of Music Corpora

58

Johan Sejr Brinch Nielsen

January 16, 2009

3.2. RESULTS CHAPTER 3

History of 1

In this section, | investigate Hypothesis E, F and G using of a history of 1.

| m il il lwmr

o

L LR gl
| | ‘l ||| 'H
rrl] H

Figure 3.8: Entropy value ordered by the number of chords

The correlation coefficient is now 0.36, which falsifies Hypothesis E. It
looks like the relationship might however be stronger in early works than in
later. Computing the correlation coefficient of works in the time periods used

in Section yields:

Period Mass | Correlation
1756 - 1772 | 137 0.32
1773 - 1781 | 231 0.44
1782 - 1791 | 267 0.35

Surprisingly, this shows a strong relationship in the middle years, and not
the beginning as would have been expected from reading the graph.

Analysis of Music Corpora 59 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS CHAPTER 3

History of 2

In this section, | investigate Hypothesis E, F and G using of a history of 2.

30

| .ﬂ(-lfﬂﬂm‘ |Fm1 T ‘
Hil ww” W

Figure 3.9: Entropy value ordered by the number of chords

The correlation coefficient between lengths and entropy values are now
0.59. This is higher than the 0.44 coefficient seen in the previous section and
suggests that longer works do have higher entropy values.

Analysis of Music Corpora 60 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS CHAPTER 3

3.2.4 Conclusion

In the previous sections | have falsified the following Hypotheses:
Hypothesis B: The relationship between production year and entropy val-
ues are constant over time, i.e. deviation of such is below 10 percent.

Hypothesis C: There is no relationship between a work’s category and it’s
entropy, i.e. the averages of entropy values in categories do not vary more
than 1.0.

Hypothesis D: The correlation between production year and entropy is
independent of category, i.e. the vary of such is below 10 percent.

Hypothesis E: There is no relationship between the length of a work and
it's entropy value, i.e. the correlation of such is below 0.3.

Hypothesis F: There is no relationship between the category of a work
and it's length, i.e. the average work length in the categories do not vary
more than 10 percent.

Hypothesis G: The correlation between production year and work length
is independent of category, i.e. the correlation between such does not vary
between category with more than 10 percent.

While Hypothesis A was not falsified, i.e. it might be true that:
Hypothesis A: There is no relationship between production year and en-
tropy, i.e. the correlation of these values is below 0.3.

Analysis of Music Corpora 61 Johan Sejr Brinch Nielsen
January 16, 2009

3.2. RESULTS CHAPTER 3

Production Year and Entropy

| conclude that there is a positive relationship between production year and
entropy values in the following five categories:

e Divertimentos and serenades for wind instruments
e Piano pieces

Piano trios

String quartets
e Symphonies

| base this on the observation, that all five categories had a significant
positive correlation coefficient using all three history settings.

| also conclude, that this relationship was significantly stronger in the first
16 years of Mozart's life (with a correlation of 0.46).

Category and Entropy

With regard to categories, | conclude that operas generally has higher entropy
than other works, and that songs and canons have lower. | base this on the
observation, that operas scored highest in average during all history settings,
while songs and canons scored lowest.

When using a history of 2 operas are 0.85 higher than the average, which
is a deviation of 81 percent more than the standard. Likewise, songs deviated
with 87 percent more than the standard and canons with 61 percent more.

Work Length and Entropy

| conclude that longer works has higher entropy. | base this on the observation
of the strong correlation of 0.59 with the history length 2.

| have not been able to falsify that the other observed relationships are
caused by the lengths of the works, rather than the entropy, however this
does seem likely at the moment, since the correlation between lengths and
entropy is strong at all history settings.

Analysis of Music Corpora 62 Johan Sejr Brinch Nielsen
January 16, 2009

3.3. CONCLUSION CHAPTER 3

3.3 Conclusion

| show that the entropy values of Mozart works grow year by year in at least 5
categories, specifically divertimentos and serenades, piano pieces, piano trios,
string quartets and symphonies. | show that this is also the case across cat-
egories during Mozart's first 16 years (with a correlation of 0.46). | conclude
that operas are most likely to have a high entropy value (2.47 in average),
whereas finding such in canons and songs are least likely (0.86 and 0.74 in
average respectively). | also show that, in the case of Mozart, longer works
have higher entropy values (with a correlation of 0.59).

All of these results are based on entropy as a measure of predictability.
However, as described in Section [1.2.6] this does have it’s drawbacks. The
result that longer works have higher entropy values might be due to the
drawbacks of using entropy as a measure, or it might be because Mozart
actually did variate longer works more. | have not been able to verify nor
falsify if the other observations are due to the length of the works, so they
might be results of drawbacks in the entropy model. However, | did observe,
that the correlation between Mozart's early works and their lengths did not
match with that of their entropy.

The framework | have implemented is modular by design, thereby allow-
ing easy manipulation and expansion. It currently implements the functions
needed for working with MusicXML and does this in such a generic manner,
that extracting more features of MusicXML could be implemented. Further-
more, it implements an AP| for extracting MusicXML information from notes.
The current framework only implements the entropy method for measuring
complexity, however it is prepared for the addition of new methods.

It would be interesting to see more analysis on the use of entropy as
a measure of complexity, specifically on how it increases by the length and
how this affects the results. Even more interesting perhaps, would be to see
other statistical methods applied on the collected data, e.g. Markov Chains
(Norris|, [1998). More scores could be collected, including other artists. This
would open the possible of a more general analysis, or perhaps a comparison of
different artists. Such later projects could also extract more information about
the pieces and thereby analysis the melody structures, intensity, modulations
etc. All these features could be implemented in the provided framework, thus
allowing multiple collection and analysis schemes for all parties involved.

Analysis of Music Corpora 63 Johan Sejr Brinch Nielsen
January 16, 2009

Bibliography

Michael T. Heath. Scientific Computing: An Introductory Survey. McGraw-
Hill Higher Education, 2. edition, 2001.

James L. Johnson. Probability and Statistics for Computer Science. Wiley-
Interscience, 2008.

Peter Lancaster and Kestutis Salkauskas. Curve and Surface Fitting: An

Introduction. London: Academic Press, 1986.

Elizabeth H. Margulis. A model of melodic expectation. Music Perception,
22(4):663-714, 2005.

Elizabeth H. Margulis and Andrew P. Beatty. Musical style, psychoaesthetics,
and prospects for entropy as an analytic tool. Music Perception, 32(4),
Winter 2008.

James R. Norris. Markov Chains (Cambridge Series in Statistical and
Probabilistic Mathematics). Cambridge University Press, new edition,
1998.

Erik Ray. Learning XML. O’Reilly Media, 2. edition, 2003.

Claude E. Shannon. A mathematical theory of communication. Bell Systems
Technical Journal, 27:379-423, 1948.

Andrew Surmani. Essentials of Music Theory, Book 1. Alfred Publishing
Company, 1998.

David Temperley. Music and Probability. MIT Press, 2007.

Jessica Williams, editor. Easy 4-Chord Keyboard Songbook: Popular Hits.
Music Sales, 2008.

64

Appendix A

Work Categories

The works processed in this project was partioned in the following categoriesE]:

1. arias, scenes, vocal ensembles and choirs with orchestra arrangements
of works by George Frederic Handel

2. canons
3. cassations, serenades, and divertimentos for orchestra
4. concertos for one or more pianos and orchestra

5. concertos for one or more string, wind or plucking instrument and or-
chestra

6. dances

7. divertimentos and serenades for wind instruments
8. divertimentos for string and wind instruments

9. duos and trios for strings and wind instruments
10. litanies, vespers

11. marches

12. masses

13. music for pantomimes and ballets

!'The same categories as can be found on www.mozarteum.com

65

CHAPTER A

14. operas

15. oratorios, sacred singspiele, and cantatas
16. part songs

17. piano pieces

18. piano sonatas

19. piano trios

20. quartets with one wind instrument

21. quintets with wind instruments

22. smaller pieces of church music

23. sonatas and variations for piano and violin
24. sonatas for organ and orchestra

25. songs

26. string quartets

27. string quintets

28. symphonies

29. variations for piano

30. works for four handed piano

31. works for two pianos

32. works of doubtful authenticity

Analysis of Music Corpora 66 Johan Sejr Brinch Nielsen
January 16, 2009

Appendix B

Missing Works

This is a list of Kochel Numbers, that was not part of the data used in this
paper (89 in total):

17| 18| 44| 46
53| 54| 55| 56
571 58| 59| 60
61| 64| 91| 92
93 | 98 | 102 | 107
115 | 116 | 139 | 140
142 | 149 | 150 | 151
153 | 154 | 163 | 177
178 | 182 | 184 | 187
190 | 197 | 198 | 199
200 | 205 | 206 | 221
226 | 227 | 235 | 236
207 | 268 | 287 | 288
200 | 201 | 312 | 324
325 | 326 | 327 | 340
342 | 350 | 355 | 362
372 | 382 | 389 | 393
395 | 405 | 410 | 411
414 | 429 | 434 | 443
444 | 470 | 510 | 514
560 | 565 | 569 | 577
579 | 611 | 615 | 624
625

67

Appendix C

Implementation Details

To speed up the computations, | have distributed the step involving conversion
from BMP files to MusicXML (the bottleneck). This is done by running mul-
tiple workers, each in a seperate virtual machine. Doing so eases distribution
over cores as well as physical machines.

The process starts by downloading scores from Mozarteum and ends with
a visualisation of the statistical results.

C.0.1 Ripping http://dme.mozarteum.net

The ripping of Mozarteum consists of downloading each JPEG page available
on the site.

The pages are located at the URL:
http://dme.mozarteum.at/DME/nma/scan.php?vsep=VSEP&pl1=PI1&I=L
Where VSEP is a collection number, P1 is a page in the collection and L is the
language (2 is English). The viewer will display pages 10 at a time, starting
from page P1.

The collection has nothing to do with the Mozart work the page is part
of. The page might not be part of a score at all.

The ripper disregards this and downloads all pages for all collections and
stores them as COLLECTION/PAGE jpg.

The crawler will order the pages according to the work.

rip_mozart.py

The script works by using a simple regular expression that will find all page
listings in the 10-page viewer at:

68

CHAPTER C

http://dme.mozarteum.at/DME/nma/scan.php?vsep=VSEP&p1=P1&I=L

The PHP file displays pages 10 at a time. A complete work is downloaded
using the following algorithm:

1. Let P be the first page number

2. Download all pages listed from P (max 10)

3. If 10 pages were downloaded, add 10 to P and repeat 2)
4. Stop when less than 10 pages are listed from P

Each page is extracted from the HTML using a simple regular expressing
that identifies the “src” attribute of the “" tags.

The ripper uses the third-party URLGrabber module to simplify grabbing
with retry. Keep-Alive does (strangely enough) not work for Mozarteum,
resulting in a new connection on each request without the old one being
closed. Because of this, Keep-Alive has been disabled.

C.0.2 Crawling http://dme.mozarteum.net

The Crawler locates each work on Mozarteum by searching for each available
category. This eases the task of ordering by category.

The script extracts the VSEP collection number and the start page from
the score link. It then fetches the pages needed from the data storage, that
was previously populated by the Ripper. In order to know when the current
work ends (on which page), it checks the start page of the succeeding work.
If no succeeding work exists, it will assume that the work is the last in the
collection and use all remaining pages.

The Crawler extracts the work’'s K-number from its title. This number is
used to obtain the year and key of the work, which is located at:
http://www.classical.net/music/composer/works/mozart/

Since Mozarteum requires a valid session cookie, the crawler requires a
valid session ID.

The data collected by the Crawler is stored in an SQLite3 database (not
backwards compatible) [[]

In short, the steps are:

1. Grab a list of all categories from the site and store them in the database

Do not try to open it with SQLite 1 or 2

Analysis of Music Corpora 69 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER C

2. Search for works in each category using Mozarteum's own search engine

3. For each work in the categories, find out which page range and what
VSEP collection number (in the script called group) belongs to the
work

4. Copy those pages from the Ripper storage to the Crawler storage into
the folder ./work.id

C.0.3 Converting JPG Pages to BMP

The pages downloaded from Mozarteum is in JPEG format. Since JPEG is not
supported by the OCR applications, the files are converted to monochrome
BMP files.

This conversion is handled by make bmps.sh, which makes sure not to
reconvert JPEG files that already has a BMP version.

The conversion itself is done using Image Magick.

make bmps.sh is a Shell script that works as follows:

for each folder in . ordered by int(name):
for each file in folder ordered by int(name):
if a file of name file.bmp exists:
skip file
convert file using Image Magick

Image Magick is used with the following parameters:
convert in.jpg -resize 2750x -sharpen 1 -compress none \

-colors 2 out.bmp

The image is resized to the chosen width, sharpened and converting into
a monochrome BMP file. The -compress none parameter ensures that no
compression is used.

C.0.4 Converting BMP Pages to XML

This step is the most complicated as it depends on commercial applications
that only run on Windows.

The conversion is started by the start_bmp_to_xml.py script which does
the following:

The main thread starts 8 child threads and assigns each of them a set
of Mozart works to process. Each child thread is also associated with an
OCR-server (a virtual machine running Windows XP).

Analysis of Music Corpora 70 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER C

When a child thread needs to convert a BMP file to MusicXML, it proceeds
as follows:

1. Move the file to your OCR-servers “input” folder
2. Wait until the file appears in your OCR-server’'s “done” folder
3. Read the MusicXML from the “done” folder

The conversion itself is not controlled by Python. If the file never shows
up on the other side, the script blocks and manual forces are needed (however
the remaining converter threads will go on).

The OCR-server works as follows:

1. Wait for BMP file in “input” folder
2. Move BMP file to “in use” folder
3. Call Liszt.exe (OCR engine) on BMP file to produce MRO file

4. Call SharpEye (OCR GUI Application) VBS script to convert MRO file
to MusicXML (no, Liszt.exe cannot handle this)

5. Write MusicXML to “done” folder

6. Move BMP file from “in use” folder to “done” folder to show that work
is done.

This process is not thread-safe when it comes to running multiple OCR-
servers on the same virtual machine. The reason this works is that the client
waits for the BMP file before reading the XML file and because the server
closes the XML file before creating the BMP file.

Sometimes the OCR server fails to process the job. The most usual cause
for this is that an error has occurred inside the SharpEye application. Such
errors are ignored and the job must be reprocessed.

The OCR-server uses Visual Basic Scripting as described in section [2.4.1]
It also has a Python part that uses the Liszt class in the util.ocr module. This
module can convert BMP files to MRO using the SharpEye (Windows Only)
binary Liszt.exe.

Analysis of Music Corpora 71 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER C

C.0.5 Converting XML Pages to Chords

Converting XML pages to chords is done by the extract_chords.py script.

The script selects all works that have no chords associated with them
from the database. It then filters out the works where all pages have been
converted to XML and extracts their chords. The result is stored in the
database.

The script uses the extract chords function from the music.chords mod-
ule.

This function extracts the chords from a MusicXML file, by first parsing
the file using the XMLScoreParser in conjunction with the DepthFirstParser
from the parsers. xml module.

C.0.6 Calculating Entropy from Chords

This calculation is done by the script calculate_entropies.py
It works as follows:

1. Select all works that do not have entropies associated with them (from
the database)

2. For each work, extract the chords

3. Use the statistics module to compute the entropies with runlength
1,2,3,4 and 5

4. Store the results in the database

All entropy computations are performed by the statistical.entropy module.
This module contains two classes:

e Distribution
e Entropy

The Distribution class will create a distribution over NV items and compute
the probability for each item.

It implements the Python Dictionary, which means the probability of event
e in sequence S can be computed by the Pythonic code:
dist = Distribution(S)
prob = dist[e]

By default, N will equal the length of S, but using a different N is needed
when working with conditional probability.

Analysis of Music Corpora 72 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER C

The Entropy class has been modelled closely around the mathematical
theory in order to make it easy to understand. Because of this, it is a bit
slow. In order to speed it up a bit, the P function that computes unconditional
entropies memorise its results for later use. These results are stored in the
dictionary P_cache.

Analysis of Music Corpora 73 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER C

The Python code for computing conditional probability is:

probability of seeing history
prob = self.P(history, map(lambda x: x[:—1],
entropy of items preceding history
n_seq =]
for item in seq:

if item[:—1] == history:

n_seq.append(item[—1])

ent = sum (self.H(n seq, item) for item in set(n_seq))
conditional entropy
return prob * ent

These are the involved steps:
1. Compute the probability of the history
2. Compute the entropy of the elements that proceed the history

3. Multiply the results of 1) and 2).

C.0.7 Making Graphs from Entropy
Graphs are made by make graph.py. The procedure is:

1. Select all works that has entropy values associated with them (from the
database).

2. Generate graphs that display entropy values, standard deviation and
average.

3. Store graphs in /var/www/images (for use with local website)

Graphs are constructed by the graphics.plotting module which uses the
external module matplotlib.

matplotlib is a graph module for Python that uses MatLab syntax. This
matplotlib module simplifies the plotting module, as it just adjusts the input
to fit matplotlib’s API and then calls this module to do the actual work.

Documentation of matplotlib can be found at:
http://matplotlib.sourceforge.net/

Analysis of Music Corpora 74 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER C

C.0.8 The Local Website

The local website is stored in /var/www. It consists of one html file (in-
dex.html) that presents the graphs located in /var/www/images.

Beware that index.html is automatically generated from index.html.tpl ;
the template.

The template is processed by update_site.py that simply replaces a cou-
ple of variables.

The local website is very simple. It consists of two files, one HTML file
and one template file (.tpl).

The template file is processed by update_site values.py

Analysis of Music Corpora 75 Johan Sejr Brinch Nielsen
January 16, 2009

Appendix D

Source Code

D.0.9 /src/make graphs2.py
import sys, math, string

from config import *
from database import x

from cvxopt import solvers
from cvxopt.misc import matrix

from graphics.plotting import Plot

class Group:
work query ="
LuuuSELECT UWork ., MIN(5000,Work. Chords)uasuchords maxbk, Entropy.valueas entropy
LuuuFROM L Work
LouououououJOINGERtropy
coonunuouuuONou Entropy.work —idu=_Work.id
LouuWHERE runlengthy=.,%s
LuLuORDERLBY | %s

[N
]

def _ init_ (self, group by, field="entropy’, order by=['year’, 'k_nr", 'id’]):
self.group by = group by
self field = field
self.order by = order by

def fun_get field(self):
return lambda x: getattr(x, self field)

76

CHAPTER D

def fun_get group(self):
if self.group by == "year":
return lambda x: str(getattr(x, self.group by))[—2:]
return lambda x: getattr(x, self.group by)

def get works(self, runlength):
sql = Group.work _query % (runlength, *,".join([self.group _by] + self.order by))
return Work().query(sql)

GRAPH_PATH = '/var/www/images/’
ORDERS = (Group('year’),
Group('category _id'),
Group('chords’),
Group(’category id’, field="chords"),
Group('category id’, field="chords max5k’),

)

def echo(s=None):
sys.stdout.write(s or "\n")
sys.stdout.flush()

def to_str(s):
return "’ join(c for c in s if c in string.printable)

calculate linear line through data points
def calc_line(data):
if len(data) == 1:
return (0, data[0][1] / float(data[0][0]))
if len(data) == 2:
p0, pl = data
a = (p1[1]—p0[1])/float(p1[0]—pO[O]) # (vI-y0)/(x0—x1)
b = pO[1] — a*p0[0] # y0 — axx0
return (a, b)

generate optimization problem
P = matrix(0., (2, 2))

q = matrix(0., (2, 1))

for x, y in data:

Analysis of Music Corpora 77 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

P[0,0] += xxx2 # + x" 2% a"2
PllLll+=1#+1xb"2
P[0O,1] +=x # + x % ab
P[1,0] +=x # + x * ba
q[0] —= 2xx*xy # — 2xy x a
q[l] —=2xy # — 2y x b

solve problem

sol = solvers.qp(2«P, q)

return sol['x']

pointsu=u[(1,6),u(2,u4),u(5,42),u(8,02),u(11,.4),,(12,,6)]
a,ubu=ucalc_line(points)

printua,b

printusum([u(a*point[0]u+ubu—upoint[1])*+2 forupointuinupoints,])
printusum([u(4u—upoint[1])*x2for point inpoints,])

sys.exit()

calculate average
def avg _group(group, get_field):
return float(sum(map(lambda w: get _field(w), group))) / len(group)

calculate standard deviation

def dev_ group(group, get field):
avg = avg_group(group, get _field)
devs = map(lambda w: (get field(w) — avg)**2, group)
return math.sqrt(sum(devs) / len(group))

plain and simple; just return values together with approx lines
def plain(groups, get field):

shorts = 0
xs =]
values =]
lines = []

for id,group in groups:
groupp = False
if len(group) < 10:
shorts +=1
x_from = len(xs)

Analysis of Music Corpora 78 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

xs += [id]*len(group)
X_to = len(xs)
g_values = map(lambda w: get _field(w), group)
if x_to — x_from > 2:
a, b = calc_ line(zip(range(x__from, x_to), g_values))
lines.append((x_from, x_to, a, b))
find outsiders
sdev = math.sqrt(sum([(ax(i+x_from)+b — get field(work))==2
for i,work in enumerate(group) |)/len(group))
for i, work in enumerate(group):
mydev = math.sqrt((ax(i+x_from)+b — get field(work))**2)
if mydev > 2xsdev:
if not groupp:
print '>>group(%s)’ % id
groupp = True
print " %4i| 1% 41| %S’ % (
work.k _nr, mydev, to_str(work.name)[:64])
values += g _values
a, b = calc_ line(zip(range(0, len(xs)), values))
if shorts > len(groups)/2:
lines.append((0, len(xs), a, b))
return xs, values, lines

average

def avg(groups, get field):
xs = [id for id, _in groups]
values = [avg_ group(group, get field) for _,group in groups]
return xs, values, []

standard deviation

def _dev(groups, get field):
xs = [id for id, _in groups]
devs = [dev__group(group, get _field) for _, group in groups |
return xs, devs, []

draw a graph based on xs, values (and errors)
def value graph(xs, values, output, lines=[], errs=None):
plot = Plot()
if not errs:
plot.flip_bar(xs, values)
else:

Analysis of Music Corpora 79 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

plot.error _bar(values, errs)
for x_from, x_to, a,b in lines:
plot.linear(x_from, x_to, a, b)
plot.labels(xs)
plot.set fontsize(6)
plot.save(output)
plot.close()

plot values according to fun and groups

def fun_graph(fun, get field, groups, output):
xs, values, lines = fun(groups, get field)
value graph(xs, values, output, lines)

draw a graph showing avg and standard deviation
def err_graph(groups, get field, output):
xs, avgs, = _avg(groups, get field)
_,devs, = dev(groups, get field)
value graph(xs=xs, values=avgs, errs=devs, output=output)

manual group by (we need to run functions on result)
def group by(get group, works):

groups = []
prev_g = None
prev_| =]

for work in works:
group = get_group(work)

if prev_g == None or group != prev_g:
prev_ g = group
prev_| =]

groups.append((group, prev_ 1))
prev_ l.append(work)
return groups

select works and entropy

for order in ORDERS:
print ‘order(%s.%s)" % (order.field, order.group by)
for runlength in (1, 2, 3, 4, 5):

Analysis of Music Corpora 80 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

print '>runlength(%i)" % runlength
works = order.get works(runlength)
groups = group_by(order.fun_get group(), works)

name = '%s.%s’ % (order field, order.group by)
for fun in (_plain, avg, dev):

path = "%s/%s_%s_%i.png’ % (GRAPH PATH, name, fun. _name__, runlength)
fun_graph(fun, order.fun_get field(), groups, path)
name +="'__err
path = "%s/%s_ %i.png’ % (GRAPH PATH, name, runlength)
err_graph(groups, order.fun _get field(), path)
echo()
D.0.10 /src/start bmp_to xml.py
from config import *
import os, time
from threading import Thread
workdirs = ['0’, '1", 2", '37]
WORK _PATH = '/home/shared/data/mozart/works/’
class Worker(Thread):
def init_ (self, key, works):
Thread. _init__ (self)
self key = key
self.works = works
self.input = SHARPEYE SERVER _INPUT % key
self.inuse = SHARPEYE SERVER INUSE % key
self.done = SHARPEYE SERVER DONE % key
def inqueue_job(self, work, page):
job ="%s_ %s" % (work, page)
from _path = "%s/%s/%s.bmp’ % (WORK _PATH, work, page)
to_path = '%s/%s.bmp" % (self.input, job)
file(to _path, 'wb').write(file(from _path, 'rb").read())
return job
def get result(self, job):
Analysis of Music Corpora 81 Johan Sejr Brinch Nielsen

January 16, 2009

CHAPTER D

jobpath = "%s/%s.bmp’ % (self.done, job)

jobxml = "%s.xml" % jobpath

while not os.path.isfile(jobpath):
time.sleep(1)

time.sleep(1)

data = file(jobxml).read()

os.unlink(jobpath)

os.unlink(jobxml)

return data

def job ready(self, work, page):
pagepath = "%s/%s/%s" % (WORK _PATH, work, page)
return os.path.isfile('%s.bmp’ % pagepath)

def process job(self, work, page):
print '%s:_%4s.,%4s’ % (self key, work, page)

while not self job ready(work, page):
time.sleep(1)

job = self.inqueue_job(work, page)
data = self.get result(job)
file("%s/%s/%s.xml" % (WORK _PATH, work, page), 'w').write(data)

def process work(self, work):
pages = filter(lambda x: x.endswith('.jpg’), os.listdir('%s/%s" % (WORK PATH, work)))
for page in pages:
if not os.path.isfile('%s/%s.xml" % (WORK _PATH, page)):
self.process _job(work, page)

def run(self):
for work in self.works:
self.process work(work)

start 8 threads, 2 on each sharpeye server

works = filter(lambda x: x != "empty’ and not "." in x, os.listdir(WORK _PATH))
works.sort(key=lambda x: int(x))

partitions = [list() for i in xrange(8)]

i=0

Analysis of Music Corpora 82 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

for work in works:
#* only add works where not all pages have been processed
add _work = False
for page in filter(lambda x: x.endswith(’.jpg"), os.listdir('%s/%s" % (WORK _PATH, work))):
if not os.path.isfile('%s/%s/%s.xml" % (WORK _PATH, work, page)):
add _work = True
break
if add_ work:
partitions[i].append(work)
i=(0+1) %8
else:
print 'skipping:,%6s’ % work

workers = [Worker(key=str(i%4), works=partition) for i,partition in enumerate(partitions)]

for worker in workers:
worker .start()

for worker in workers:
worker join()

D.0.11 /src/graphics/__init__.py

D.0.12 /src/graphics/plotting.py
import matplotlib

matplotlib.use("Agg")

from pylab import *

class Plot:

def init_ (self):

figure(figsize=(12,8))
self.width = 1.0

def set width(self, width):
self.width = width

def bar(self, heights, color="blue"):

Analysis of Music Corpora 83 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

xs = tuple(i * self.width for i in xrange(len(heights)))
return [bar(x,h,width=self.width,color=color) for x,h in zip(xs, heights)]

def color bar(self, heights, colors):
xs = tuple(i * self.width for i in xrange(len(heights)))
for (x, h), cin zip(zip(xs, heights), colors):
bar(x, h, width=self.width, color=c)

def error _bar(self, heights, errors):
xs = tuple(i * self.width for i in xrange(len(heights)))

return [errorbar(x,h,error, fmt="x")
for (x,h),error in zip(zip(xs, heights), errors) |

def flip_bar(self, xs, values, _colors=['blue’,’red]):
_colors = list(__colors)
labels = self.labels(xs)

prev = None
colors =[]
color = 0

for x, value in zip(xs, values):
if prev == None or x != prev:
color = (color + 1) % len(_colors)
prev = x
colors.append(__colors[color])
self.color _bar(values, colors)

def labels(self, in_labels, valign="center’):
labels, prev = [], None
for label in in_labels:
if prev = None and label == prev:
labels.append("")
continue
labels.append(label)
prev = label
xs = tuple(ixself.width for i in xrange(len(labels)))
xticks(xs, labels, verticalalignment=valign)
return labels

def linear(self, x _from, x_to, a, b):
xs,ys =1, I
for x in xrange(x_from, x_to):
xs.append(x)

Analysis of Music Corpora 84 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

ys.append(a*x + b)
plot(xs, ys, 'g', linewidth=2)

def set fontsize(self, size):
map (lambda x: x.set fontsize(size), axes().get xticklabels())
map (lambda x: x.set fontsize(size), axes().get yticklabels())

def save(self, path):
savefig(path)

def close(self):
close()

@staticmethod

def bar _graph(name_value dict, graph _title="", output name="bargraph.png’):
figure(figsize=(8, 8)) # image dimensions
title(graph_title, size="xx—small")

add bars
for i, key in zip(range(len(name_value dict)), name value dict.keys()):
bar(i + 0.25, name_value dict[key], color="red")

axis setup
xticks(arange(.65, len(name_value dict)),
[('%s:.,%d" % (name, value)) for name, value in
zip(name_value dict.keys(), name_value dict.values())],
size="xx—small")
max_ value = max(name_value dict.values())
tick range = arange(0, max_value, (max_value / 7))
yticks(tick range, size="xx—small")
formatter = FixedFormatter([str(x) for x in tick range])
gca().yaxis.set _major_formatter(formatter)
gca().yaxis.grid(which="major")

savefig(output _name)

D.0.13 /src/graphics/imaging.py

from PIL import Image

def sharpen(path_in, path out):
count =0

Analysis of Music Corpora 85 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

img = Image.open(path_in)
pix = img.load()
width, height = img.size

for h in xrange(height—2):
for w in xrange(width):
oc = pix[w,h]
nc = oc & pix[w,h+1] & pix[w,h+2]
if oc = nc:
count +=1

pix[w,h] = nc

img.save(path _out)

D.0.14 /src/mozateum/ init .py
D.0.15 /src/mozateum/crawler.py

D.0.16 /src/process emtpy.py
from config import *

import os, time
from threading import Thread

WORK _PATH = '/home/shared/data/mozart/works/empty/’

class Worker(Thread):
def init_ (self, key, works):

Thread. _init__ (self)
self key = key
self.works = works
self.input = SHARPEYE SERVER INPUT % key
self.inuse = SHARPEYE SERVER INUSE % key
self.done = SHARPEYE SERVER DONE % key

def inqueue_job(self, work, page):
job ="%s_ %s’ % (work, page)
from _path = "%s/%s/%s.bmp’ % (WORK _PATH, work, page)
to path = '%s/%s.bmp" % (self.input, job)
file(to_path, 'wb’).write(file(from _path, 'rb").read())

Analysis of Music Corpora 86 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

return job

def get result(self, job):

jobpath = "%s/%s.bmp’ % (self.done, job)

jobxml = "%s.xml" % jobpath

while not os.path.isfile(jobpath):
time.sleep(1)

time.sleep(1)

data = file(jobxml).read()

os.unlink(jobpath)

os.unlink(jobxml)

return data

def job ready(self, work, page):
pagepath = "%s/%s/%s" % (WORK _PATH, work, page)
return os.path.isfile('%s.bmp’ % pagepath)

def process job(self, work, page):
print '%s:%4s.%4s’ % (self.key, work, page)

while not self job ready(work, page):
time.sleep(1)

job = self.inqueue_job(work, page)
data = self.get result(job)
file("%s/%s/%s.xml" % (WORK _PATH, work, page), 'w').write(data)

def process work(self, work):
pages = filter(lambda x: x.endswith('.jpg"), os.listdir('%s/%s" % (WORK _PATH, work)))
for page in pages:
if not os.path.isfile('%s/%s.xml" % (WORK _PATH, page)):
self.process _job(work, page)

def run(self):
for work in self.works:
self.process work(work)

start 8 threads, 2 on each sharpeye server
works = filter(lambda x: not "." in X, os.listdirf(WORK _PATH))
works.sort(key=lambda x: int(x))

Analysis of Music Corpora 87 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

worker = Worker('0’, works)
worker.run()

D.0.17 /src/ocr/server.py

i

Server_will convert,all_files_putuin,Z: /worksdirs/KEY /input_to_done_folder

from config import =
import os, time, threading

from util.ocr import Liszt, OCRException
from vbs import sharpeye _ mro_to xml

class Server:
SHARPEYE LOCK = threading.Lock()

def init (self, key):
self.key = key
self.input = SHARPEYE SERVER INPUT % key
self.inuse = SHARPEYE SERVER INUSE % key
self.done = SHARPEYE SERVER DONE % key
self.queue = set()
for job in os.listdir(self.inuse):

self.move _job(job, self.inuse, self.input)

def finish _job(self, job, mro):
ensure only one sharpeye process at a time
with Server. SHARPEYE LOCK:

xml = sharpeye _mro_to_xml(mro)
self.move _job(job, self.inuse, self.done)
xml_path = self.get path(job + ".xml’, self.done)
file(xml_path, 'w").write(xml or ")

def get path(self, job, status):
return '%s%s’ % (status, job)

def move job(self, job, old, new):
old path = self.get path(job, old)

Analysis of Music Corpora 88 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

data = file(old _path, 'rb").read()

new path = self.get path(job, new)
file(new path, 'wb').write(data)

os.unlink(old _path)

def get _more jobs(self):
jobs = os.listdir(self.input)
self.queue.update(jobs)

def get job(self):
while not self.queue:
self.get _more_jobs()
time.sleep(1)
return self.queue.pop()

def process job(self):
job = self.get job()
self.move _job(job, self.input, self.inuse)

image path = self.get path(job, self.inuse)

try:

mro = Liszt.scan image(image path)
except OCRException, e:

mro ="

run sharpeye routines in new thread
self .finish _job(job, mro)

def start(self):
while True:
self.process _job()
time.sleep(1)

D.0.18 /src/ocr/__init__.py

D.0.19 /src/mozart xml left.py

from parsers import pdf

Analysis of Music Corpora 89 Johan Sejr Brinch Nielsen

January 16, 2009

CHAPTER D

from parsers import ocr
import util.io

import os, os.path, sys

ROOT = 'Z:/data/mozart/’
BLOCK =5

def isint(s):
try:
int(s)
except:
return False
return True

names = sorted(filter(isint, os.listdir(ROOT)), key=lambda x: int(x))
names = reversed(names[:int(len(names))/2])
for name in names:
path = ROOT + name
if os.path.isdir(path):
print '>>_%s’ % name
pages left = sorted(filter(lambda x: x.endswith(".bmp’), os.listdir(path)), key=lambda x: int(x.s
while pages left:
tmp_ dir = util.io.tmpdir()

pages, pages left = pages left[:BLOCK], pages left[BLOCK:]
xml_file = "%s/%s.xml" % (path, pages[0])
if len(pages) != BLOCK:

break

if os.path.isfile(xml _file):
print 'skipping:’, pages[0], pages[—1]
continue

print ‘converting:’, pages[0], pages[—1]

copy pages to tmp dir
for page in pages:
page path = path + '/’ + page
data = file(page path,’rb’).read()
file(tmp _dir + '/" + page.rjust(14, '0"), 'wb').write(data)

convert to music xml
xml = pdf.bmps_to_xml(tmp _dir, check type="first’) or "’

Analysis of Music Corpora 90 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

if xml:

print '>>_ SUCCESS, ;)
else:

print '>>_FAILED! ;:(’
file(xml _file, 'w").write(xml)
#tutil.io.rmdir(tmp_ dir)

D.0.20 /src/scan_image.py

import sys
from util import ocr

print ocr.Liszt.scan _image to xml(sys.argv[1])

D.0.21 /src/database/__init__.py

from config import =

import o0s.path
from database.models import *
from pysqlite2 import dbapi2 as sqlite3

import models

from models.category import Category
from models.composer import Composer
from models.work import Work

from models.chord import Chord

from models.entropy import Entropy

from models.composer resource import ComposerResource
from models.work resource import WorkResource

from models.resource import Resource
from models.resource group import ResourceGroup

TABLES = (Category, Composer, Work, Chord, Entropy,

ComposerResource, WorkResource,
Resource, ResourceGroup)

CONNECTION = None

def db_ connect():
if no db, create it

Analysis of Music Corpora 91 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

if not os.path.exists(DB_PATH):
print 'could not, find_db, creating new’
file(DB_PATH,'w").write("")
db_ create()
global CONNECTION
CONNECTION = CONNECTION or sqlite3.connect(DB_PATH)
CONNECTION.row_ factory = sqlite3.Row
return CONNECTION

def db_ cursor():
db_ connect()
global CONNECTION
return CONNECTION.cursor()

def db_create():
map(lambda T: T().create(), TABLES)

def db_execute(sql, params=None):
if not params:
return db_ cursor().execute(sql)
params = tuple(params)
return db_cursor().execute(sql, params)

def db_execute one(sql, params=None):
return db_execute(sql, params).fetchone()

def db_commit():
db_connect().commit()

def db_update(sql, params=None):
db_execute(sql, params)
db_commit()

D.0.22 /src/database/test.py
from database import *

creating new composer
from datetime import date

c = Composer(name="Bach’, period _start=date.today(), period stop=date.today())
c.save()
print 'ID:’, c.id

c.name = 'stefan’

Analysis of Music Corpora 92 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

c.save()

dump table
for c in Composer().query('SELECT * FROM_ Composer'):
print c.id, c.name

D.0.23 /src/database/models/chord.py

from database.models import Model

class Chord(Model):
TABLE = "Chord’
COLUMNS = ('id’, 'symbol’, 'work id’, 'position’)
TYPES = ('INTEGER’, 'VARCHAR(4)’, 'INTEGER’, 'INTEGER")

D.0.24 /src/database/models/ init .py

import database as db

class Model:
def init_ (self, row=None, sxkwargs):
setattr(self, self. COLUMNS[0], None)
if row:
for key in self. COLUMNS:
try:
__row[key] # check that key exists
except IndexError e:
raise IndexError(key)
for key in _row.keys():
setattr(self, key, _row[key])
else:

for key,value in kwargs.items():
setattr(self, key, value)

def create(self):
print ‘creating:,%s.%s’ % (self, self. TABLE)
columns = ("%s,INTEGER, PRIMARY_KEY_AUTOINCREMENT," % self. COLUMNSIO0]) + ',",j
db.db_update("CREATELTABLE_%s.(%s)" % (self. TABLE, columns))

def save(self):

sql ="
if self.id:
_set =",/ join("%s="7" % col for col in self. COLUMNS[1:])
sql = '"UPDATEL%S.SET %s WHERELId=%s" % (self. TABLE, _set, self.id)
Analysis of Music Corpora 93 Johan Sejr Brinch Nielsen

January 16, 2009

CHAPTER D

else:
_set = ",./".join("?" for col in self. COLUMNSJ1:])
sql = 'INSERTLINTOL%s0(%s)LVALUES (%s)’ % (self. TABLE, ",.,".join(self. COLUMNSJ[1
db.db_update(sql, (getattr(self, attr) for attr in self COLUMNSI1:]))
if not self.id:
self.id = db.db__execute one(’'SELECT_last_insert rowid()_asuRowld")['Rowld’]
return self

def query(self, query, params=None):
return map(lambda row: self. class (_row=row), list(db.db_execute(query, params)))

def query one(self, query, params=None):
row = db.db_execute one(query, params)
return row and self. class__ (__row=row) or None

def hash (self):
return hash(self.id)

def cmp_ (self, other):
return cmp(self.id, other.id)

D.0.25 /src/database/models/composer _resource.py
from database.models import Model

class ComposerResource(Model):
TABLE = "Composer _Resource’
COLUMNS = ('id", "composer_id", 'resource id’)
TYPES = ('INTEGER’, 'INTEGER’ , 'INTEGER")

D.0.26 /src/database/models/work.py
from database.models import Model

class Work(Model):
TABLE = "Work’
COLUMNS = ('id", "‘composer_id', 'name’, 'year', 'key', 'category id', 'pages’, ‘chords’, 'k _nr')
TYPES = ('INTEGER’, 'INTEGER’, 'VARCHAR(255)", 'INTEGER’, '"VARCHAR(16)’, 'INTEGER’,
, 'INTEGER")

D.0.27 /src/database/models/resource_group.py

from database.models import Model

Analysis of Music Corpora 94 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

class ResourceGroup(Model):
TABLE = 'Resource Group’
COLUMNS = ('id’, 'name’, 'type')
TYPES = ('INTEGER’, 'VARCHAR(255)’, 'VARCHAR(16)")

D.0.28 /src/database/models/resource.py
from database.models import Model

class Resource(Model):
TABLE = 'Resource’
COLUMNS = ('id", "resource group _id’, 'uri’, 'nodetype’)
TYPES = ('INTEGER’, 'INTEGER’, 'VARCHAR(511)’, 'VARCHAR(511)")

D.0.29 /src/database/models/category.py
from database.models import Model

class Category(Model):
TABLE = 'Category’
COLUMNS = (’id’, 'name’)
TYPES = ('INTEGER’, 'VARCHAR(255)")

D.0.30 /src/database/models/entropy.py
from database.models import Model

class Entropy(Model):
TABLE = "Entropy’
COLUMNS = ('id’, 'work _id", 'method’, 'runlength’, 'value')
TYPES = ('INTEGER’, 'INTEGER’, 'VARCHAR(16)", INTEGER’, 'REAL")

D.0.31 /src/database/models/work resource.py
from database.models import Model

class WorkResource(Model):
TABLE = "Work Resource’
COLUMNS = ('id", 'work _id", 'resource _id")
TYPES = ('INTEGER', 'INTEGER’, 'INTEGER")

D.0.32 /src/database/models/composer.py

from database.models import Model

Analysis of Music Corpora 95 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

class Composer(Model):
TABLE = "Composer’
COLUMNS = ('id", 'name’, 'year _start’, 'year stop')
TYPES = ('INTEGER’, 'VARCHAR(255)", 'INTEGER’, 'INTEGER',)

D.0.33 /src/music/__init__.py

D.0.34 /src/music/music.py

from gmpy import mpq
from parsers. xml import handler, traversers

class XMLScoreParser(handler.Handler):
"""Parse MusicXMLdocument"""

def init_ (self):

self. parts = {}

self. measures = {}

self. measure _numbers =]
self. measure = None

self. _sign_ = None

self .handlers = {
'root’ : self.root,
'score—partwise’ : self.score partwise,
‘part—list’ : self.part_ list,
'part’ : self.part,
'measure’ : self.measure,
"attributes’ : self.attributes,
'note’ : self.note,

'barline’ : self.barline,
"forward’ : self.forward,
'backup’ : self backup,

}

" Node,Handlers """
def root(self, root, parent):
return root.get nodes()

Analysis of Music Corpora 96 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

def score partwise(self, score, parent):
return score.get nodes()

def part list(self, parts, parent):
for part in parts.get nodes():
self. parts [part.get attribute(’id")] =]

def part(self, part, parent):
return part.get nodes()

open new measure and add it to list
def measure(self, xml_measure, parent):
number = xml _measure.get attribute('number’)

start new measure (copy old if possible)
if number in self. measures
measure = self. _measures__ [number]
measure.reset()
measure.set _divisions(self. _measure __ .divisions)
self. measure = measure
else:
self. measure =self. measure and self. measure .copy() or Measure()
self. _measure .set number(number)
self. _measures [number] = self. measure
self. _measure _numbers__ .append(number)

traverse children
return xm|_measure.get nodes()

parse attributes
def attributes(self, attributes, parent):
divisions pr quarter
if attributes[divisions']:
self. measure .set divisions(int(attributes['divisions’].get content()))
key
if attributes['key']:
self. _measure .set key(int(attributes['key']['fifths’].get content()))
time
if attributes['time']:
self. _measure .set time((int(attributes[time’]['beats’].get content()),
int(attributes['time’]['beat—type'].get content())))
check for percussion and interrupt if present

Analysis of Music Corpora 97 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

if attributes|'clef’]:

self. sign_ = attributes['clef']['sign’].get content()

barline ends measure

def barline(self, barline, parent):
##print ‘barline: ', self. measure _ .number
self. _measure .end()

forward duration
def forward(self, forward, parent):
self. measure forward(int(forward['duration’].get content()))

backup duration
def backup(self, backup, parent):
self. _measure .backup(int(backup['duration’].get content()))

add note to measure
def note(self, note, parent):
sKkip percussion notes
if self. _sign == "percussion’:
raise traversers.InterruptException()
skip abnormal notes
if not note['duration’]:
return
skip unpitched notes (eg. drums/percussion)
if note['unpitched’]:
return

extract duration
duration = int(note['duration’].get _content())

pause
if note['rest’]:
self. _measure .forward(duration)
return
L CHECKS DONE: NORMAL NOTE, """
xml__pitch = note['pitch’]
step = xml_ pitch['step’].get content()

Analysis of Music Corpora 98 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

alter = xml_pitch['alter’] and int(xml _pitch['alter'].get content()) or 0

note is part of a chord of previous notes
if note['chord’]:
self. _measure_ .add note to previous(Notelnterval(step, alter), duration)
note is independent of previous notes
else:
self. _measure_ .add note(Notelnterval(step, alter), duration)
self. _measure .forward(duration)

return note.get nodes()

" Implementationpget handlery"""
def get handler(self, node, parent):
if node.get _name() in self.handlers:
return self.handlers[node.get name()]

class Measure:
def _ init__ (self, number=None, time=None, divisions=None, key=None):
self.timeline = Timeline()
self.now = mpq(0)
self.length = 0

self.set _number(number)
self.set time(time)

self.set _divisions(divisions)
self.set key(key)

llllllusetumethodsuull nn
def set _number(self, number):
self.number = number

def set_time(self, time):
self.time = time and mpq(time[0], time[1]) or None

def set_ divisions(self, divisions):

self.divisions = divisions

self.time__pr_dur = divisions and (mpq(1,4) / mpq(divisions)) or None
def set key(self, key):

Analysis of Music Corpora 99 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

self key = key

" note methods,, """
def add note(self, note, duration):
note.duration = self.time pr_dur * duration
if self.now + note.duration > self.length:
self.length = self.now + note.duration
self.timeline.add _event(self.now, note)

def add note to previous(self, note, duration):
note.duration = self.time_pr_dur * duration
self.timeline.add event to previous(note)

[ARINI] i

utime,methods;,
def forward(self, duration):
self.now += self.time pr_durxduration
if self.now > self.length:

self.length = self.now

def backup(self, duration):
self.now —= self.time_pr_durxduration

def skip to(self, duration):
self.now = self.time_pr_durxduration

nn Ilugetumethodsull nn
def get length(self):
return self.timeline.get length()

uendumeasurey
def end(self):
self.length = self.time

mi IIuresetuStartull nmn
def reset(self):
self.now = mpq(0)

llllllucheckutimeullllll
def check(self):
return self.length == self time

i i

LCopyumeasure,

Analysis of Music Corpora 100 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

def copy(self):
return Measure(number=self.number, time=self.time and (self.time.numer(), self.time.denom())

class Notelnterval:
notes to index = {

‘A’ 0,
'B': 2,
'C': 3,
‘D" 5,
B’ 7,
'F': 8,
"G 10
b

def init (self, step, alter):
self.note = (Notelnterval.notes to_index[step] + alter) % 12
self.start = None
self.duration = None

class Timeline:
def init_ (self):
self .time =]
self.prev_events = []
self.prev_time = 0

def add event(self, start, event):
event.start = start
i=0
for i in xrange(len(self.time)):
time, events = self.time[i]
if time > start:
break
time matches, append event
if time == start:
events.append(event)
self.prev_events = events
return
time passed by, insert event before
events = [event]
self.time.insert(i, (start, events))

Analysis of Music Corpora 101 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

self.prev_events = events

def add event to previous(self, event):
event.start = self.prev_ time
self.prev__events.append(event)

def get length(self):
start, events = self.time[—1]
return start + events[0].duration

def count events(self):
return sum(map(lambda i: len(i[1]), self.time))

D.0.35 /src/music/chords.py

from parsers. xml import traversers
from music import XMLScoreParser

mldentifychord fromynotes, whenyin correct,order
roots = [A",'Bb’,’"H",’C",'Db",'D",’Eb’,'E",'F","Gb’,'G","Ab’]
def identify chord(notes):

chord = roots[notes[0]]

if notes[0] + 3 in notes:

chord +="m’
if notes[0] + 10 in notes:
chord += "7

return chord

def find _chord(notes):
chord, notes = [], set(notes)

test each note as being part of the chord
for note in notes:

_chord = _find_chord(note, notes)
if len(__chord) > len(chord):
chord = chord

return chord

def find chord(root, notes):
chord = [root]
for note in notes:
if note in chord:

Analysis of Music Corpora 102 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

continue
interval = note—root
new notes = notes — set([note])
for allowed in ((3,4), (6,), (10,)):

for octave in (—12, 0, 12):

if interval+octave in allowed:
chord += (_find _chord(note, new notes))
return chord

def extract chords(parser):
all_chords =[]
for measure _number in parser. _measure _numbers
measure = parser. _measures__ [measure_number]

notes = []

for (time, events) in measure.timeline.time:
remove expired notes
notes = filter(lambda x: x.start+x.duration > time, notes)
add new notes
notes += events
get chord in original position
chord notes = find_chord(map(lambda x: x.note, notes))
skip if less than 3 notes
if len(chord notes) < 3:

continue
identify chord
chord = identify chord(chord notes)
all_chords.append(chord)
return all_chords

def extract chords_from xml(path):
handler = XMLScoreParser()
score parser = traversers.DepthFirst Traverser(handler)
score_ parser.traverse xml_file(path)
return extract chords(handler)

D.0.36 /src/extract_chords.py
from config import *
import os

from music.chords import extract chords from xml
from database import x

Analysis of Music Corpora 103 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

def get work path(work):
return '%s%s/’ % (WORK PATH, work)

def get page path(work, page):
return '%s%s’ % (get work path(work), page)

def get chords(work):

pages = filter(lambda f: f.endswith(".jpg’), os.listdir(get work path(work)))
page xmils = []
for page in pages:

pagepath = get page path(work, page)

if not os.path.isfile(pagepath + '.xml’):

return None
page xmls.append(pagepath + ".xml’)

chords = []

for page xml in page xmls:
new_chords = extract chords_from xml(page xml)
chords.extend(new_ chords)

return chords

def add chords(db_work, chords):
for i, chord in enumerate(chords):
db_chord = Chord(symbol = chord, position =i, work _id=db_work.id)
db_ chord.save()

work _query ="

SELECT *,FROM_ Work

WHERE_NOT_EXISTS

L(SELECT L*FROMLChord \WHERE_Work.id_=uChord.work _id)

works = Work().query(work _query)
for work in works:
chords = get chords(work.id)
if chords:
add_ chords(work, chords)
work.chords = len(chords)

Analysis of Music Corpora 104 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

work.save()
print '%s.—>0%s" % (work.id, len(chords))

D.0.37 /src/mozart_xml_right.py

from parsers import pdf
from parsers import ocr
import util.io

import o0s, os.path, sys

ROOT = 'Z:/data/mozart/’
BLOCK =5

def isint(s):
try:
int(s)
except:
return False
return True

names = sorted(filter(isint, os.listdir(ROOT)), key=lambda x: int(x))
names = names[int(len(names))/2:]
for name in names:
path = ROOT + name
if os.path.isdir(path):
print '>>_%s’ % name
pages left = sorted(filter(lambda x: x.endswith(".bmp’), os.listdir(path)), key=lambda x: int(x.s
while pages left:
tmp_ dir = util.io.tmpdir()

pages, pages left = pages left[:BLOCK], pages left[BLOCK:]
xml_file = "%s/%s.xml" % (path, pages[0])
if len(pages) != BLOCK:

break

if os.path.isfile(xml _file):
print 'skipping:’, pages[0], pages[—1]
continue

print ‘converting:’, pages[0], pages[—1]

copy pages to tmp dir
for page in pages:
page path = path + '/’ + page

Analysis of Music Corpora 105 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

data = file(page path,'rb’).read()
file(tmp _dir + '/" + page.rjust(14, '0"), 'wb').write(data)

convert to music xml
xml = pdf.bmps_to_xml(tmp _dir, check type='first’) or "
if xml:
print '>> SUCCESS, ;;)’
else:
print '>> FAILED! ;:("
file(xml _file, 'w').write(xml)
Ftutil.io.rmdir(tmp_ dir)

D.0.38 /src/make_graphs.py
import sys, math

from config import =
from database import *

from graphics.plotting import Plot

GRAPH PATH = '/var/www/images/’

def make graph(groups, prefix):
entropies = [list() for i in range(5)]

flag_colors = { True : 'blue’, False : 'red’ }

flags = {}
flag = False
for group in groups:
flag = not flag
for work in group:
flags[work.id] = flag
work _entropies = Entropy().query('SELECT _* FROM_Entropy_WHERE_work _id=7",
(work.id,))
for work _entropy in work _entropies:
setattr(work _entropy, 'work’, work)
entropies[work _entropy.runlength—1].append(work _entropy)

make graph runlength(flag colors, flags, entropies, prefix)

Analysis of Music Corpora 106 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

def make graph_runlength(flag colors, flags, entropies, prefix):
for runlength in (1,2,3,4,5):
sys.stdout.write(".")
sys.stdout.flush()

plot = Plot()
plot.set width(8)

heights = []

colors =[]

for entropy in entropies[runlength—1]:
heights.append(entropy.value > 0 and entropy.value or 0)
colors.append (flag _colors[flags[entropy.work id]])

plot.color _bars(heights, colors)

xs =[]
for i, entropy in enumerate(entropies[runlength—1]):
xs.append(str(getattr(entropy.work, order)))
if order == 'year’:
xs = map(lambda x: x[—2:], xs)
plot.labels(tuple(xs))
plot.set fontsize(6)

plot.save(prefix + ' %i.png’ % (runlength))
plot.close()

def make avg graph(order, groups, prefix):
averages = [dict() for i in xrange(5)]
for group in groups:
values = [list() for i in xrange(5) |
group _name ="'
for work in group:
group__name = getattr(work, order)
work _entropies = Entropy().query('SELECT _* FROM_EntropylWHERE_work _id=7",
(work.id,))
for work _entropy in work _entropies:
values[work _entropy.runlength—1].append(work _entropy.value)
for i in xrange(5):
averages|i][group _name] = len(values[i]) and sum(values[i]) / float(len(values[i])) or 0

for runlength in xrange(5):

Analysis of Music Corpora 107 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

plot = Plot()
plot.bar(tuple(averages[runlength][year] for year in averages[runlength]))

xs = tuple(name for name in averages[runlength])
if order == 'year’:

xs = map(lambda xs: str(xs)[—2:], xs)
plot.labels(xs)

plot.set fontsize(6)

plot.save(prefix + * %i.png” % (runlength+1))
plot.close()

def make spr_graph(order, groups, prefix):
averages = [dict() for i in xrange(5)]
for group in groups:
values = [list() for i in xrange(5)]
group _name ="
for work in group:
group __name = getattr(work, order)
work _entropies = Entropy().query('SELECT _* FROM_Entropy, WHERE_work _id=7",
(work.id,))
for work _entropy in work _entropies:
values[work _entropy.runlength—1].append(work _entropy.value)
for i in xrange(5):
avg = len(values[i]) and sum(values][i]) / float(len(values[i])) or O
averages|i][group__name] = math.sqrt(sum(map(lambda x: (x — avg)**2, values[i])) / len(v:

for runlength in xrange(5):
plot = Plot()
plot.bar(tuple(averages[runlength][name] for name in averages[runlength]))

xs = tuple(name for name in averages[runlength])
if order == 'year’:

xs = map(lambda xs: str(xs)[—2:], xs)
plot.labels(xs)

plot.set fontsize(6)

plot.save(prefix + *_ %i.png” % (runlength+1))
plot.close()

Analysis of Music Corpora 108 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

def make all _in_one(order, groups, prefix):
averages = [dict() for i in xrange(5)]
deviations = [dict() for i in xrange(5)]
group _names = |]
for group in groups:
values = [list() for i in xrange(5)]
group _name ="
for work in group:
group__name = getattr(work, order)
work _entropies = Entropy().query('SELECT _* FROM_EntropylWHERE_work _id=7",
(work.id,))
for work _entropy in work _entropies:
values[work _entropy.runlength—1].append(work _entropy.value)
for i in xrange(5):
avg = len(values[i]) and sum(values[i]) / float(len(values[i])) or O
averages|i][group _name] = avg
deviations[i][group _name] = math.sqrt(sum(map(lambda x: (x — avg)**2, values[i])) / len(
group __names.append(group name)

for runlength in xrange(5):
group _avg = averages|runlength]
group _dev = deviations[runlength]

plot = Plot()
plot.error _bar([group _avg[group] for group in group names |,
[group_dev[group] for group in group _names |])

xs = tuple(name for name in averages[runlength])
if order == 'year’:

xs = map(lambda xs: str(xs)[—2:], xs)
plot.labels(xs)

plot.set fontsize(6)

plot.save(prefix + * %i.png’ % (runlength+1))
plot.close()

work _query ="
SELECT *,FROM_ Work
WHERELEXISTS,(

Analysis of Music Corpora 109 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

uuSELECTu*
uuFROMuEntl’Opy
LuWHEREEntropy.work _idu=,Work.id

)
ORDER_BY%s,_year, Work.id

for order in ('year’, 'category id’, ‘chords’):
sys.stdout.write(order + ":)")

groups = []

if order == 'chords’:
prev = None
i=—1

for work in Work().query(work _query % order):
if int(work.chords/50) != prev:
groups.append([])
prev = int(work.chords/50)
+=1
groups|i].append(work)
else:
prev = None
i=-—1
for work in Work().query(work _query % order):
if getattr(work, order) !'= prev:
groups.append([])
prev = getattr(work, order)
I +=1
groupsli].append(work)

make _graph(groups, GRAPH PATH + order)

make avg graph(order, groups, GRAPH PATH + order + ' avg’)
make spr_graph(order, groups, GRAPH PATH + order + ' spr’)
make all _in_one(order, groups, GRAPH PATH + order + ' _all’)
sys.stdout.write("\n")

D.0.39 /src/start ocr_server.py

import sys
from ocr.server import Server

server = Server(key=sys.argv[1])

server .start()

Analysis of Music Corpora 110 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

D.0.40 /src/rip_mozart.py

import re, os, os.path
from url.urlgrabber.grabber import URL Grabber, URLGrabError

DOMAIN = 'http://dme.mozarteum.at’
URL WORK = DOMAIN+'/DME/nma/scan.php?vsep=%i&I=2&p1=%]’
RE PAGE = re.compile(r"src="([""]+) valt="\—(\d+)\—"")

STORAGE = "/home/shared/data/mozart/’
URLGRABBER = URLGrabber(keepalive=0, retries=15)

def fetch work(work nr, pages urls):
if not os.path.isdir(STORAGE + str(work _nr)):
0s.mkdir(STORAGE + str(work nr))
for page in pages urls:
path = STORAGE + str(work _nr) + '/" + str(page) + ".jpg’
if os.path.isfile(path):
continue
print 'grabbing:’, work nr, page
try:
data = URLGRABBER.urlread(DOMAIN+pages_ urls[page])
except URLGrabError,e:
print e
file('mozart _skipped’, 'a").write('%6s.%6s.%s\n" % (str(work nr), str(page), DOMAIN+
continue
fd = file(path, 'w")
fd.write(data)
fd.close()

def fetch _work pages(work nr=0, start page=0):

print work nr, start page

url = URL_WORK % (work _nr, start _page)

data = URLGRABBER:.urlread(url)

page, pages = start_page, {}

for (image url, page) in RE_ PAGE findall(data):
pages[int(page)] = image url

if len(pages) == 10:
pages.update(fetch work pages(work nr, int(page)+1))

return pages

for work nrin (127,135, 93, 79, 87):

Analysis of Music Corpora 111 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

print '||_buildingupageylistforuworkunry%i.." % work nr
pages = fetch work pages(work nr)

print '||_fetching_pages,(%8i).." % len(pages)

fetch _work(work _nr, pages)

D.0.41 /src/update_page_count.py

from database import *
import os

WORK _PATH = '/home/shared/data/mozart/works/’

for work in Work().query("SELECT ,* ,FROM_ Work"):
row = db_execute one('SELECT,COUNT () asucountuFROMyChord uZWHERE_work _id=7", (wor
pages = filter(lambda x: x.endswith('.jpg'), os.listdir('%s%s' % (WORK _PATH, work.id)))
work.pages = len(pages)

if work.chords != row[count’]:
work.chords = row[count’]
print work.id, work.pages, work.chords

work.save()

D.0.42 /src/vbs/__init__.py

from config import =

import 0s, 0s.path
from util import io

def sharpeye(path):
if path[—1] == "/":
path = path[:—1]
count = len(os.listdir(path))
cmd = SHARPEYE _CMD % (path.replace(’/', "\\"), count)
os.system(cmd)
if os.path.isfile(’%s/AllPages.xml" % path):
return file("%s/AllPages.xml’ % path).read()
return None

def sharpeye mro_to xml(mro_data):
mro_ path = io.tmpname(suffix=".mro")
file(mro_path,’'w’).write(mro_ data)

Analysis of Music Corpora 112 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

mro__path = mro_ path.replace('/", "\\)
cmd = SHARPEYE_ MRO_TO_ XML CMD % (mro_ path)
print cmd
os.system(cmd)
xml_path = "%s.xml’ % mro_ path
if os.path.isfile(xml_path):
xml _data = file(xml_path).read()
os.unlink(xml _path)
return xml_data
return None

def close window(title):
os.system(CLOSE _ WINDOW _ CMD % title)

D.0.43 /src/statistics/__init__.py

D.0.44 /src/statistics/correlation.py
import math

def calc_ correlation(pairs):

N = len(pairs)
if N < 2:
return 0

sum_x=sum_y =0
sum_xx=sum_yy =10
sum_xy =0
for x,y in pairs:
sum_ X += x
sum_y +=y
SUM XX += X**2
SUM Yy += yxx*2
sum_ xy += xky

return (Nxsum_xy — sum_ xssum_y) / \
math.sqrt((Nsxsum _xx — sum_ x#%2) % (Nksum _yy — sum_yxx2))

D.0.45 /src/statistics/entropy.py

import math

Analysis of Music Corpora 113 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

class Distribution(dict):

def init_ (self, collection=None, N=None):
dict. __init__ (self)
if collection:

self.from _collection(collection, N=N)

def equalize(self, count):
self.count = count
self. getitem = lambda self, item : 1.0/self.count

def from _collection(self, collection, N=None):
self.count = N or len(collection)
counts = {}
for item in collection:
counts[item] = counts.get(item, 0) + 1
for item in counts:
self[item] = counts[item] / float(self.count)

def getitem (self, key):
if not key in self and (key,) in self:
return self[(key,)]
if not key in self:
print 'NOT_FOUND! Here_are_the keys.(count=%i):" % self.count
print self.keys()
return dict. _ getitem _ (self, key)

class Entropy:
def _ init_ (self):
self.dist = None
self.dist _cache = {}

get runs from sequence

def get runs(self, items, N):
res = list(tuple(items[i:i+N]) for i in xrange(len(items)—N+1))
return res

probability for item
def P(self, item, seq=None):
if not seq:
return self.dist[item]

Analysis of Music Corpora 114 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

key = tuple(seq)
if key in self.dist cache:
dist = self.dist _cache[key]
else:
dist = Distribution(seq)
self.dist _cache[key] = dist
return dist[item]

probability conditioned by history
def P (self, seq, history=None):
if not history:
return self.P(seq, item)

probability of seeing history
prob = self.P(history, map(lambda x: x[:—1], seq))

entropy of items preceding history
n_seq =]
for item in seq:
if item[:—1] == history:
n_seq.append(item[—1])
ent = sum (self.H(n _seq, item) for item in set(n_seq))

conditional entropy
return prob *x ent

entropy value of item conditioned by hist
def H(self, seq, item=None, history=[], base=2):
N = len(history) + 1
unconditional (no history)
if N == 1:
prob = self.P(seq=seq, item=item)
if prob > 0.0:
return —1.0 * prob = math.log(prob, base)
conditional
else:
return self.P_ (history=history, seq=seq)
return 0.0

N is runlength, history is N—1
def calc_entropy(self, items, N=1, base=2):
entropy = 0.0

Analysis of Music Corpora 115 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

if N > 1:
runs = self.get runs(items, N)
for history in set(map(lambda x: x[:—1], runs)):
entropy += self.H(runs, history=history, base=base)
else:
entropy = sum(self.H(items, item=item, base=base) for item in set(items))

entropy is NOT negative!
assert entropy >= 0.0
return entropy

D.0.46 /src/imslp/_init .py

D.0.47 /src/imslp/crawler.py

import re, string, time

from threading import Thread

from urllib2 import urlopen

from database import x*

from url.urlgrabber.grabber import URL Grabber

DOMAIN = 'http://imslp.org’

RE _COMPOSER = re.compile(r'<aghref="([~"]+)"_title="Category:[~ "]+">(["<]+)")
RE_COMPOSER_ DTL = re.compile(r’'<span.class="mw—headline" > ([~ <]+)</h2>\sx<p>\ ((

RE_ARTICLE = re.compile(r'<ajhref="([""]+)"_title="[""]+">([" <]+)</Ii>")
RE_WORK = re.compile(r'>([~<]+)[~"]x[~ /]=([~"]+\ .pdf)’)

RE _CATEGORY = re.compile(r'intersect=([""]+)"")
URL COMPOSERS = "/wiki/Category:Composers&from=%s’

URL GRABBER = None
def fetch(url):
global URL GRABBER
URL GRABBER = URL GRABBER or URLGrabber(keepalive=1, retries=15)
data = None
while data == None:
try:
data = URL _GRABBER.urlread('%s%s’ % (DOMAIN, url))
except Exception,e:
time.sleep(60)

Analysis of Music Corpora 116 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

return data

class SimpleFetcher(Thread):
def init_ (self):
Thread. _init__ (self)
self.pending =]
self.completed = []

def run(self):
while True:
if len(self.pending) == 0:
continue
key, url = self.pending.pop()
data = fetch(url)
self.completed.append(((key, url), data))

def add(self, key, url):
self.pending.append((key, url))

def getitem (self, item):
if (len(self.pending) == 0) and len(self.completed) == 0:
raise IndexError()
while len(self.completed) == 0:
time.sleep(.1)
return self.completed.pop()

class Crawler:
def get composers(self):

prepare fetcher
fetcher = SimpleFetcher()

add urls to fetcher
composers = {}
for start in ABCDEFGHIJKLMNOPQRSTUVWXYZ'):
data = fetch(URL _COMPOSERS % start)
for (url, name) in RE_ COMPOSER findall(data):
if not name in composers:
print 'adding:’,name
fetcher.add(name, url)
composers[name] = None
print 'starting_fetcher..’

Analysis of Music Corpora 117 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

start fetcher
fetcher.start()

process data
for (key, url), data in fetcher:

print key

composers[key| = self.get composer(url=url, data=data)
return composers

def get composer(self, url, data=None):

data = data or fetch(url)
match = RE_ COMPOSER _DTL.search(data)
if not match:

file("C:/music/composer data’,'w’).write(data)

return
name, noise0, year start, noisel, year stop = match.groups()
¢ = Composer(name=name, url=url,

year start=int(year start), year stop=int(year stop))

return c.save()

def get categories(self, composer):
data = fetch(composer.url)
file("C:/music/composer’,'w").write(data)
for name in set(RE_ CATEGORY findall(data)):
category = Category().query one('SELECT_* ,FROMyCategoryu WHERELname="%s"" %
if not category:
category = Category(name=name)
category.save()
yield category

def get works by category(self, composer, category):
data = fetch(composer.url + "&intersect=%s" % category.name)
return self.get works from _list(composer, category, data)

def get works(self, composer):
for work in self.get works from _list(composer, None, fetch(composer.url)):

yield work

def get works from _list(self, composer, category, data):
for url, name in RE_ ARTICLE findall(data):
data = fetch(url)
for work name, url in RE_ WORK findall(data):

Analysis of Music Corpora 118 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

work = db.db__execute one('SELECT_* FROM_Work WHERE_url=?", (url,))
if work:

yield work

continue
work = Work(name="%su—01%s" % (name, work name), url=url,

composer _id=composer.id, category id=category and category.id or Non¢

work.save()
yield work

D.0.48 /src/crawl mozart.py

import re, o0s, os.path
from url.urlgrabber.grabber import URLGrabber, URLGrabError

DOMAIN = 'http://dme.mozarteum.at’
URL WORK = DOMAIN+'/DME/nma/scan.php?vsep=%i&I=2&p1=%i’
RE PAGE = re.compile(r"<imgusre="(["']+) 'ualt="\—(\d+)\—"")

STORAGE = '/home/shared/data/mozart/’
URLGRABBER = URLGrabber(keepalive=0, retries=15)

def fetch _work(work nr, pages urls):
if not os.path.isdir(STORAGE + str(work nr)):
0s.mkdir(STORAGE + str(work _nr))
for page in pages _urls:
path = STORAGE + str(work _nr) + '/" + str(page) + ".jpg’
if os.path.isfile(path):
continue
print 'grabbing:’, work nr, page
try:
data = URLGRABBER.urlread(DOMAIN-+pages _ urls[page])
except URLGrabError,e:
print e
file('mozart _skipped’, 'a’).write('%6s.%6s.%s\n" % (str(work nr), str(page), DOMAIN+r
continue
fd = file(path, 'w")
fd.write(data)
fd.close()

def fetch work pages(work nr=0, start page=0):
url = URL_WORK % (work _nr, start _page)
data = URLGRABBER.urlread(url)
page, pages = start page, {}

Analysis of Music Corpora 119 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

for (image url, page) in RE_ PAGE findall(data):
pages[int(page)] = image url

if len(pages) == 10:
pages.update(fetch work pages(work nr, int(page)+1))

return pages

for work nr in range(172,4096):
print '||_buildingupageylist foruworkunr%i.." % work nr
pages = fetch work pages(work nr)
print '||_fetching_pages..’
fetch _work(work _nr, pages)

D.0.49 /src/crawl.py

from database import *
from imslp import crawler

crawler = crawler.Crawler()
#crawler.get _composers()

composers = list(Composer().query(""

LunouunnSELECT

LounnouuE ROM Composer

LuuouuuuWHERELIDLL

ouuuuuououn(SELECT GMIN(Composer.id)
Luouuooo e FROMComposer, JOIN Work
LouuooouoooooooooouuONoWork.composeridu=,Composer.id
_H_H_II_II_II_H_H_H_H_II_II_I)

uuuum))

for i, composer in enumerate(reversed(composers)):
try:
print '%.8f:1,%5i,.%s" % (float(i) / len(composers), composer.id, str(composer.name))
except:
pass
categories = list(crawler.get categories(composer))
if categories:
for j, category in enumerate(categories):
list(crawler.get works by category(composer, category))
else:
list(crawler.get works(composer))

D.0.50 /src/mozart bmp.py

Analysis of Music Corpora 120 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

#!1/usr/bin/python

from parsers import pdf
import 0s, 0s.path
from parsers import ocr

for name in map(str, sorted(xrange(45,500))):
path = '/home/shared/data/mozart/" + name
if os.path.isdir(path):
print '>>_%s’ % name
for page in sorted(os.listdir(path)):
print 'converting,%s..” % page
bmp_file = "%s/%s.bmp” % (path, page)
xml = pdf.jpg _to bmp('%s/%s" % (path, page), bmp _file)

D.0.51 /src/crawl mozart works.py

import os, re, urllib, urllib2
from database import x

STORAGE PAGES = '/home/shared/data/mozart/’
STORAGE = "%sworks/" % STORAGE _PAGES

fire up a browser and get yourself a valid session id
SESSION _ID = "1e74285fd5e8fc69e73e07a3f322a5d9’

urls

URL SEARCH = ’http://dme.mozarteum.at/DME/nma/nmapub _srch.php?I=2’
URL CATEGORY = URL SEARCH

URL WORK _LIST = 'http://www.classical.net/music/composer/works/mozart/’

regular expressions

RE _CATEGORY _DATA = re.compile(r'<selectuname="selGen"id="selGen"_size="1">(.x?)< /select>

RE_CATEGORY = re.compile(r"<option\s*(selected)?\s*value="([""]+)">")

RE_WORK = re.compile(r"\(\d+\)</td><tduustyle="padding—top:5px;'Lvalign="middle’ > ([~ <]+)< /td

RE_ K NR = re.compile(r'(K|k)\.\sx(\d+)")

RE_WORK INFO = re.compile(r'<td>K. (\d+)</td><td>[" <[#</td><td>(\d{4})[~ <]*</td><

Analysis of Music Corpora 121 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

def build_k map():
k_map = {}
data = fetch(URL _WORK LIST)
for k_nr, year, key in RE_ WORK _INFO findall(data):
k_mapl[k nr] = (year, key)
return kK _map

def isint(s):
try:
int(s)
except:
return False
return True

def fetch(url, post data={}, session id=SESSION ID, retries=3):

data = urllib.urlencode(post _data)
request = urllib2.Request(url, data, {'cookie": 'PHPSESSID="+session id})
try:

return urllib2.urlopen(request).read()
except:

if retries:

return fetch(url, retries—1)

return None

def get categories():

data = fetch(URL _CATEGORY)

data = RE_ CATEGORY _ DATA findall(data)[0]

for |, category in RE_ CATEGORY findall(data):
skip numbers, as they are categories of categories
if isint(category):

continue

yield category

def get works(category):
post data = {'selLng’: 2", 'selGen": category, 'ordby’: '3", 'btnsubmit": 'Go’'}
data = fetch(URL _SEARCH, post data)
file("outputtmp’,'w").write(data)
for title, group, page in RE_ WORK .findall(data):

Analysis of Music Corpora 122 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

yield title, group, page

def get work info(k map, title):

match = RE_ K _NR findall(title)

k_nr = match and match[0][1] or None

if k_nr!=None and k_nrin k_map:
return k_map[k_nr]

if k_nr:
print ‘nothing for:’, title

return None

get map of K—numbers —> (year, key=None)
k_map = build _k_map()

create composer mozart if not exists
name = 'Wolfgang,,Amadeus,,Mozart'
composer = Composer().query one('SELECT « FROM_ Composer . WHERE_ name=7", (name,))
if not composer:
composer = Composer(name=name, year start=1756, year stop=1791)
composer.save()

create resource_group "pages" if not present
page folder = ResourceGroup().query one(

'SELECT _* ,FROM_Resource Group,WHERELname=?", ('page folder’,))
if not page folder:

page folder = ResourceGroup(name="pagefolder’, type="folder")

page folder.save()

retrieve works for each category
print ">> crawlwww'
categories = {}

groups = {}
count =0
found = 0

for category in get categories():
print '>>’, category
categories[category] = []

Analysis of Music Corpora 123 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

for title, group, page in get works(category):

if not group in groups:
groups[group] = [int(page)]

else:
groups[group].append(int(page))
groups[group].sort()

count +=1

info = get_work _info(k__map, title)

if info:
year, key = info
categories[category].append((title, (group, page), year, key))
found +=1

Insert categories into database
print '>> insert_into_database’
for category name in categories:
print '>>’, category name
category = Category().query one(
'SELECT % ,FROMCategory . WHERE_name=?", (category name,))

if not category:
category = Category(name=category name)
category.save()

works = categories[category name]
for idx, (title, (group, start page), year, key) in enumerate(works):
work = Work().query one(
'SELECT *,FROM_Work , WHERE_jname=7?_AND_year=? AND_key="7", (title year,key))

work = Work(name=title, year=year, key=key,
composer _id=composer.id, category _id=category.id)
work.save()

create resource
path = "%s%i/" % (STORAGE, work.id)
os.mkdir(path)

when does the next work start?

pages = filter(lambda s: s.endswith('.jpg’), os.listdir(STORAGE PAGES + group))
pages = map(int, map(lambda x: x[:—1xlen(" jpg")], pages))

pages = filter(lambda i: i >= int(start page), pages)

pages.sort()

Analysis of Music Corpora 124 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

figure out when to stop
stop_page = None
for page in groups[group]:
if page > int(start _page):
stop page = page—1
break

if stop page:
pages = filter(lambda i: i <= stop page, pages)

check if all pages exists
if stop page:
if not len(pages) == stop_page — int(start_page) + 1:
print 'missingupages:’, group, '%i—%i" % (int(start page), stop page)
continue

lets copy the selected pages to the new resource location

for page in list(pages):
page bin = file(STORAGE _PAGES + group + ("/%i.jpg" % page), 'rb").read()
file(path + "%i.jpg’ % page, 'wb’).write(page bin)

Iinsert resources
uri = 'file://data/mozart/works/%i/" % work.id
resource = Resource().query one(
'SELECT_*,FROM_Resource ,ZWHERE_uri=?', (uri,))
if resource:
continue

resource = Resource(resource group id=page folder.id, uri=uri,
nodetype="folder")

resource.save()

WorkResource(work _id=work.id, resource id=resource.id).save()

print 'got.info_for:", found
print 'missing,for:,’, count—found

D.0.52 /src/update_site_values.py

from database import x
from config import =

Analysis of Music Corpora 125 Johan Sejr Brinch Nielsen

January 16, 2009

CHAPTER D

works = db__execute one("”
SELECT ,COUNT () as count
FROMy_Work

WHERELEXISTS

LL(LSELECT L

uouuFROMuuEntropy

uouuWHEREL Entropy.work idu=_Work.id

uu)
"")['count’]

chords = db__execute one('SELECTLCOUNT (x)uasucount,FROM_Chord’)['count’]

years = db__execute one(""
SELECTUMIN(Work.year)uasumin _year, JMAX(Work.year)asumax__year
FROM ., Work

WHERE__EXISTS

L(LSELECTL#+UFROMuChord _(WHERELChord.work _id,=,Work.idw)

)

year from = years['min_year’]
year to = years['max_year’]
years = year to — year from

categories = db__execute one(’"

SELECTLCOUNT (%)uasycount
FROMu_ucategory,\WHERELEXISTS

Lu(SELECT ux

uuuFROM U Work

uLuWHERELWork.category idu=yCategory.id LANDLEXISTS
Luuuu(SELECT L%

LouuuuFROMChord

uouuuuWHERELChord.work —idy=,Work.id

uuuuu)
uu);
"")['count’]

vars = {
'$SWORKSS$S': works,
'$$CHORDS$$': chords,
'$$FROMS$S": year from,
'$$TO$S : year to,
'$$YEARSSS': years,
'$$CATEGORIESS$S': categories

Analysis of Music Corpora 126 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

}

generate new index file from template
tpl = file(WWW _ROOT + "/index.html.tpl').read()
for var in vars:

tpl = tpl.replace(var, str(vars|var]))

file((WWW _ROOT + "/index.html’, 'w’").write(tpl)
D.0.53 /src/test.py

import sys

import os.path

from music import chords

from statistics.entropy import Distribution, Entropy

Ist = ['A", 'Bb’, 'B’, 'C’, 'Db’, 'D’, 'Eb’, 'E", 'F’", 'Gb’, 'G’, 'Ab’]

def test(path="%s/%s" % (os.path.dirname(sys.argv[0]), r'samples/MozaVeilSample.xml’)):
all_chords = chords.extract chords_from _xml(path)
entropy = Entropy()
print ‘entropy:’
import math
for i in xrange(1,9):
print "runs.%i:%f" % (i, entropy.calc__entropy(all _chords, N=i))

run test
test(path="%s/%s" % (os.path.dirname(sys.argv[0]), r'samples/bicycle.xml’))
#len(sys.argv) > 1 and [test(path) for path in sys.argv[1:]] or test()

D.0.54 /src/update K nr.py

import re
from database import *

RE_K_ NR = re.compile(r'(K|k)\.\sx(\d+)")

for work in Work().query('SELECT ,* ,FROM_ Work"):
match = RE_ K _NR findall(work.name)
k_nr = match and match[0][1] or None
work.k_nr = int(k_nr)
work.save()
print '%iu—>_%i" % (work.id, work .k _nr)

Analysis of Music Corpora 127 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

D.0.55 /src/parsers/_xml/__init__.py
from xml.parsers import expat

class Node:

[ARINI]

LuuuXMLNode Python XML object

nin

I
def init_ (self, name, attr={}, parent=None, content=None):
self. name = name
self. attrs = attr
self. content = content
self. parent = parent
self. _nodes =]

properties
def get name(self):
return self. name

def get content(self):
return self. content

def get parent(self):
return self. parent

def set content(self, content):

self. content = content

attributes
def get attribute(self, attr):
return self. attrs .get(attr, None)

def set attribute(self, attr, value):
self. attrs_ [attr] = value

def get attributes(self):
return self. attrs

nodes

Analysis of Music Corpora 128 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

def add _node(self, node):
name = node.get name()
self. _nodes .append(node)

def get nodes(self, name=None):
if not name:
for node in self. nodes
yield node
for node in self. nodes
if node.get _name() == name:
yield node

def get node(self, name):
for node in self.get nodes(name):
return node

easy node access
def getitem (self, name_ or_index):
if type(name _or_index) == int:
return self. nodes [name or_index]
return self.get _node(name _or_index)

easy node check
def contains__ (self, name):
return bool(self.get node(name))

string representation
def str (self):
return '<%s XMLNode %s>" % (self. _module , self. name)

class Parser:

[ARINI]

LuoaParsep, XML to , XMLNode, jobjects, preserving,structure

nin
I

def init_ (self):
self.parser = expat.ParserCreate()
self.parser.StartElementHandler = self.start _element
self.parser.EndElementHandler = self.end _element
self.parser.CharacterDataHandler = self.char__handler

Analysis of Music Corpora 129 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

def parse _xml _file(self, path):
return self.parse xml(file(path).read())

def parse xml(self, xml):
self.root = Node('root")
self.current = self.root
self.parser.Parse(xml)
return self.root

def start element(self, name, attr):
node = Node(name, attr, parent=self.current)
self.current.add _node(node)
self.current = node

def end element(self, name):
self.current = self.current.get parent()

def char_handler(self, content):
self.current.set content(content)

D.0.56 /src/parsers/_xml/handler.py

class Handler():
def set root(self, root):
self.root = root

def get handler(self, item, root, parent, node):
raise NotImplementedError("Youumustuimplement,, getitem ")

D.0.57 /src/parsers/ xml/traversers.py
from parsers. xml import Parser

class InterruptException(Exception):
pass

class DepthFirstTraverser:

nn

uuuuDepth—first XML Tree Traverser

nin
[| [}

def _ init__ (self, handler):
self.handler = handler

Analysis of Music Corpora 130 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

self.root = None

def traverse xml(self, xml _data):
parser = Parser()
parser.parse_ xml(xml_data)
self.set root(parser.root)
self.traverse(self.root)

def traverse xml _file(self, path):
return self.traverse xml(file(path).read())

def set_root(self, node):
self.root = node
self.handler.set root(self.root)

def traverse(self, xml_node, parent=None):
node handler = self.handler.get handler(node=xml| node, parent=parent)
if not node handler:
return
try:
nodes = node handler(xml_node, parent=parent)
if not nodes:
return
for node in nodes:
self.traverse(node, parent=xml_node)
except InterruptException:
pass

D.0.58 /src/parsers/_init .py

class Handler():
def set root(self, root):
self.root = root

def get handler(self, xargs, sxkwargs):
raise NotlmplementedError("Youumustuimplementoget handler(%s)" % kwargs.keys())

D.0.59 /src/parsers/ocr/_init .py

D.0.60 /src/parsers/ocr/sharpeye.py

import vbs

Analysis of Music Corpora 131 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

def process files(path):
return vbs.sharpeye(path)

D.0.61 /src/parsers/mro/_init_.py

D.0.62 /src/parsers/mro/handler.py

from parsers import Handler
from traversers import DepthFirstTraverser

class MROHandler(Handler):

def init_ (self):
self.handlers = {
'note’: self.note,
"chord’: self.chord,

'bar';: self.bar,
'stave’: self.stave,
+

self.notes by pos = {}
self.pos = None
self.stave = None

""" Implementationget _handler,"""

def get handler(self, node, parent):
if node.get name() in self.handlers:

return self.handlers[node.get name()]

return self.default

def default(self, node, parent):
return node.get nodes()

def stave(self, node, parent):
self stave = (node.attributes['top'], node.attributes|'left’])
return node.get nodes(’bars’)

def bar(self, node, parent):
return node.get nodes('chords’)

def chord(self, node, parent):
if ‘flagposn’ in node.attributes:
self.pos = ', join(reversed(node.attributes['flagposn’].split(",")))

Analysis of Music Corpora 132 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

return node.get nodes()

def note(self, node, parent):
pos = self.pos
self.notes by pos[pos] = self.notes by pos.get(pos, []) + [node]
return node.get nodes()

S e S
WEeTMOAO

¥
def getP(p):
p = int(p)
while p < O or p > 6:
p=p<0andp+7
p=p>6andp —7
return P[p]

handler = MROHandler()

trav = DepthFirstTraverser(handler)

trav.traverse_mro_file("c:/output3.xml’)

for key,value in sorted(handler.notes by pos.items(), key=lambda x: int(x[0].split(",")[0])):
print key, ', join(getP(note.attributes['p’]) for note in value)

D.0.63 /src/parsers/mro/traversers.py
import re

class DepthFirstTraverser:

LuuuDepth—first XML Tree Traverser

mnin
[| [

def _ init__ (self, handler):
self.handler = handler
self.root = None

def traverse _mro(self, data):
self .traverse(MRO(data=data))

Analysis of Music Corpora 133 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

def traverse_mro_file(self, path):
return self.traverse _mro(file(path).read())

def set root(self, node):
self.root = node
self.handler.set _root(self.root)

def traverse(self, mro_node, parent=None):
node handler = self.handler.get handler(node=mro_node, parent=parent)
if not node handler:
return
nodes = node handler(mro_ node, parent=parent)
if not nodes:
return
for node in nodes:
self.traverse(node, parent=mro__node)

class MRO:
REGEX HEAD = re.compile(r'SharpEyeMusicOCROutputFile’)
REGEX TERM = re.compile(r' ([~ \s]+)\$?\s+(([~{"\s]-)["([""]|"")=")")
REGEX STRUCT = re.compile(r'([~\s]+)\s+{(.*})’, re. DOTALL)
REGEX WS = re.compile(r'\s+")

def init_ (self, name="root’, data=None):

self.blocks = (
(MRO.REGEX_HEAD, self.head),
(MRO.REGEX _TERM, self.term),
(MRO.REGEX STRUCT, self.struct),
(MRO.REGEX WS, self.ws),
)

self.name = name

self.attributes = {}

self.nodes =]

self.parse(data)

def get name(self):
return self name

def get nodes(self, name=None):
return name and filter(lambda x: x.name==name, self.nodes) or self.nodes

def head(self):

Analysis of Music Corpora 134 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

return ”’

def ws(self):
return ”’

def term(self, name, value, *args):
self.attributes[name] = value
return "’

def struct(self, name, struct):
data, count ="', 1
vals = {"{": 1, '} -1}
for c in struct:
count += vals.get(c, 0)
if count ==
break
data +=c¢
self.nodes.append(MRO(name=name, data=data))
res = struct[len(data)+1:]
return res

def parse(self, data):
pos =0
while data:
has_match = False
for regex,handler in self.blocks:
match = regex.match(data)
if match:
has_match = True
pos += match.end()
data = handler(xmatch.groups()) + data[match.end():]
if not has_match:
raise Exception('No.match!?,(%i)\n%s" % (pos, data[:100]))

def repr_ (self):
retval = "
retval += '<%s_%s>\n" % (self.get _name(), ""join('%s="%s"." % (n,v) for (n,v) in self.attrit
retval += "\n".join(map(str, self.nodes))
retval += '</%s>\n" % self.get _name()
return retval

D.0.64 /src/parsers/pdf/__init__.py

import 0s, 0s.path

Analysis of Music Corpora 135 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

import util.ocr, util.io
import parsers.ocr.sharpeye

def pdf page to bmp(pdf file, bmp_file, page=0, args=[]):
CMD = "converty%su%s[%i]%s" % ('w’.join(args), pdf file, page, bmp _file)
os.system(CMD)
return os.path.isfile(bmp _file)

def jpg _to bmp(jpg_file, bmp _file, args=['—resize 2750x’, '—sharpenyl’, '—compressunone’, '—colors.,
CMD = "converty%su%su%s' % (jpg_file, "' join(args), bmp _file)
os.system(CMD)
return os.path.isfile(bmp _ file)

def jpgs _to bmps(jpg_dir, bmp_file):
for i,fname in enumerate(os.listdir(jpg _ dir)):
path = bmp_file % str(i).rjust(8, '0")
if jpg_to_bmp(jpg_dir + /" + fname, path):
yield path

def pdf to bmp(pdf file, bmp _file=None, args=[]):
bmp_file = bmp_file or pdf _file + '—%s.bmp’
for page in xrange(1000):
rjust_page = str(page).rjust(5, '0")
path = bmp_file % rjust _page
if not pdf page to bmp(pdf file, path, page, args):
break
yield path

def jpgs _to_xml(jpg_dir, xml_file=None):
get tmp work dir
dir = util.io.tmpdir()
bmp_file = "%s%s' % (dir, 'page—%s.bmp’)
convert scores from jpg to bmps
pages = list((jpgs_to bmps(jpg dir, bmp _file)))
minimum = len(pages) * 0.8
find pages containing actual scores
for i,page in enumerate(list(pages)):
if not util.ocr.Liszt.is_score(page):
pages.remove(page)
os.unlink(page)

Analysis of Music Corpora 136 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

no scores, return

if len(pages) < minimum or len(pages) < 1:
return None

convert scores to music xml!

xml = parsers.ocr.sharpeye.process _files(dir)

delete tmp dir

util.io.rmdir(dir)

return xml!

return xm|

def score _to bmp(pdf file, bmp_file=None):
return pdf to bmp(pdf file, bmp file, args=['—resize,2750x’, '—sharpenyl’, '—compressunone’, -

def score to xml(pdf file, xml file=None):
get tmp work dir
dir = util.io.tmpdir()
bmp_file = "%s%s' % (dir, 'page—%s.bmp’)
convert scores from pdf to bmps
pages = list(score to bmp(pdf file, bmp _file))
xml = bmps_to_ xml(dir)
delete tmp dir
util.io.rmdir{(dir)
return xml
return xm|

def bmps_to xml(dir, check type="all'):
pages = tuple(dir + '/ + p for p in os.listdir(dir))

if check type == "all’:
minimum = len(pages) * 0.8
find pages containing actual scores
for i,page in enumerate(list(pages)):
if not util.ocr.Liszt.is_score(page):
pages.remove(page)
os.unlink(page)
no scores, return
if len(pages) < minimum:
return None
elif check type == 'first”:
if not util.ocr.Liszt.is_score(pages[0]):
return None

Analysis of Music Corpora 137 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

convert scores to music xm/
return parsers.ocr.sharpeye.process _files(dir)

D.0.65 /src/util/__init__.py

D.0.66 /src/util/io.py

import 0s, 0s.path
import random, string

__ALPHA = string.lowercase

def tmpname(path="C:/Temp/’, prefix="", suffix=".tmp"):
fname = None
while (not fname or os.path.isfile('%s%s%s%s’ % (path, prefix, fname, suffix))):
fname = ""join(random.sample(__ALPHA . 8))
return '%s%s%s%s' % (path, prefix, fname, suffix)

def tmpdir(path="C:/Temp/’):
dirname = None
while (not dirname or os.path.isdir(dirname)):
dirname = "%s%s/" % (path, " join(random.sample(__ALPHA | 8)))
os.makedirs(dirname)
return dirname

def rmdir(dir, recursive=True):
if dir[—1] 1="/":
dir += "/
delete all files and folders in dir
if recursive:
for name in os.listdir(dir):
if os.path.isfile(dir+name):
os.unlink(dir+name)
elif os.path.isdir(dir+name):
rmdir(dir+name)
dir should be empty now
os.rmdir(dir)

D.0.67 /src/util/ocr.py

from config import *

import os, time

Analysis of Music Corpora 138 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

from io import tmpname
from threading import Thread
from vbs import close window, sharpeye _mro_to xml

class OCRException(Exception):
pass

class Liszt:
LISZT CMD = "%(bin)su"%(input)s" "% (output)s" " %(config)s"’

class Closer(Thread):
def init (self, title):
Thread. _init__ (self)
self.state = 'stopped’
self title = title

def run(self):
self state = 'running’
while self.state == 'running’:
close window(self title)
time.sleep(.5)
self state = 'stopped’

def stop(self):
self.state = 'stopping’
while self state != 'stopped’:
time.sleep(.1)

@staticmethod
def scan _image(input_ path):
get tmp file path
output_file = tmpname(path=LISZT TMP _PATH, suffix=".mro")

prepare command
cmd = Liszt.LISZT CMD % {'bin’ : LISZT BIN PATH,
‘input’ : input_ path,
‘output’: output_file,
‘config’: LISZT CFG_PATH}
cmd = cmd.replace(’/’, "\\')
print cmd

Analysis of Music Corpora 139 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

prepare to close stupid braindead popup warning from SharpEye
closer = Liszt.Closer("Warning, from_SharpEye")
closer.start()

run command
retval = os.system(cmd)

stop closer
closer.stop()

check output
if not os.path.isfile(output _file):
message = 'Angerrorgrunning OCRpuon,%s..\n" + \
"Commandywas: \'%s\'\n" + \
'Returnyvalue:\n%s'’
raise OCRException(message % (input_path, cmd, retval))

read output xml

data = file(output_file).read()
clean up
os.unlink(output_ file)

return data

@staticmethod
def scan _image to xml(path):
mro = None
try:
mro = Liszt.scan_image(path)
except OCRException,e:
return None
return sharpeye _mro_to_ xml(mro)

@staticmethod
def is_score(path):
try:
Liszt.scan _image(path)
except OCRException,e:
return False
return True

Analysis of Music Corpora 140 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

D.0.68 /src/util/imaging.py
import os, time

class ImageMagick:
IM_BIN PATH = "convert,’

@staticmethod
def convert pdf to bmp(path, page, output):
if os.path.isfile(output):
os.unlink(output)
print '>" + ImageMagick.IM_BIN PATH + "—density,3000"%s[%s]"u"%s"" % (path,page,outy
os.popen(ImageMagick.IM _BIN PATH + "—density,300." %s[%s]"u"%s"" % (path,page,outpt
return os.path.isfile(output)

D.0.69 /src/util/pdf.py
import imaging, io, 0s

class PDFReader:
def init_ (self, path):
self path = path

def get pages as bmp(self):
output = io.tmpname('C:/tmp/’, ".bmp’)
i=0
while imaging.ImageMagick.convert pdf to bmp(self.path, i, output):
yield file(output,'rb").read()
+=1
os.unlink(output)

D.0.70 /src/entropy_test.py
from database import *

from statistics import entropy

WORK _ID = 1004

RUNLENGTH =5

chords = Chord().query("'SELECT _* ,FROM_Chord Z\WHERE_work _id=?", (WORK ID,))
symbols = map(lambda c: c.symbol, chords)

#print symbols

Analysis of Music Corpora 141 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

print '%4s:.%5s_chords’ % (WORK __ID, len(symbols))

ent = entropy.Entropy()
value = ent.calc__entropy(symbols, N=RUNLENGTH)

print 'entropy:’, value

D.0.71 /src/mozart.py

from parsers import pdf
import 0s, 0s.path
from parsers import ocr

for fname in os.listdir('mozart _pages’):
if os.path.exists('mozart pages/%s.xml" % fname):
continue
if os.path.isdir('mozart pages/’ + fname):
print 'processing%s.." % fname
try:
xml = pdf.jpgs_to xml('mozart pages/%s’ % fname) or "’
file('mozart _pages/%s.xml" % fname, 'w').write(xml)
except Exception,e:
print 'Exception:’, €

D.0.72 /src/supervisor.py
import commands, time, sys

get vmware processes that use more than 50 percent CPU
CMD = 'topu—bnl,|ugrepu—iuvmwarey|ugrepu—EL"Su+([5—9][0—9]|100) ™

HOST = sys.argv[1]
MAX IDLE = 30 * 60 # 30 minutes

def get active processes():

data = commands.getoutput(CMD)

pids = set()

for line in data.split('\n"):

if line:
items = line.split('.)")
if items[0]:
pids.add(int(items[0]))

Analysis of Music Corpora 142 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

else:
pids.add(int(items[1]))
return pids

def message(pid, status):
subject = "AoMC _ status:[%s]_VMware:u%su—>1%s' % (HOST, str(pid).rjust(5, '0"), status)
commands.getoutput(’'zsh,;/home/shared/code/musicXML /src/sendmail.sh,,"%s"" % subject)

def supervise():
processes = {}
while True: # never surrender!
for pid in get active processes():
if pid in processes:
status, = processes[pid]
if status == 'inactive’:
message(pid, 'active’)
print pid, 'active’
processes[pid] = ("active’, time.time())
else:
processes[pid] = ("active’, time.time())
message(pid, ‘new’)

for pid in processes:
status, last _seen = processes|pid]
if status == "active’ and time.time() — last _seen > MAX IDLE:
message(pid, 'inactive’)
processes[pid] = (‘inactive’, last _seen)
time.sleep(1)

supervise()

D.0.73 /src/url/_init__.py

D.0.74 /src/mozart_xml _back.py
from parsers import pdf

from parsers import ocr

import util.io

import os, os.path, sys

ROOT = 'Z:/data/mozart/’
BLOCK =5

Analysis of Music Corpora 143 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

def isint(s):
try:
int(s)
except:
return False
return True

names = sorted(filter(isint, os.listdir(ROOT)), key=lambda x: int(x))
for name in reversed(names):
path = ROOT + name
if os.path.isdir(path):
print '>>_%s' % name
pages left = sorted(filter(lambda x: x.endswith(".bmp’), os.listdir(path)), key=lambda x: int(x.s
while pages left:
tmp_ dir = util.io.tmpdir()

pages, pages left = pages left[BLOCK], pages left[BLOCK:]
xml_file = "%s/%s.xml" % (path, pages[0])
if len(pages) != BLOCK:

break

if os.path.isfile(xml _file):
print 'skipping:’, pages[0], pages[—1]
continue

print ‘converting:’, pages[0], pages[—1]

copy pages to tmp dir
for page in pages:
page path = path + '/' + page
data = file(page path,’rb").read()
file(tmp_dir + '/" + page.rjust(14, '0"), 'wb’).write(data)

convert to music xml
xml = pdf.bmps_to xml(tmp_dir, check type='first’) or "
if xml:
print '>> SUCCESS, ;)
else:
print '>>_FAILED! :(’
file(xml _file, 'w').write(xml)
Zutil.io.rmdir(tmp_ dir)

D.0.75 /src/config.py

Analysis of Music Corpora 144 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

import os

"G PATHUTOLSHAREDUSAMBADRIVE(windows, ! =, posix), """
SHARED = None
if os.name == "posix’:
SHARED = "/home/shared/’
else:
SHARED = 'Z:/’

nin DATABASE,,"""
DB PATH = SHARED + 'data/musicdb.sqlite3’

" PATHUTO STORAGE, """
WORK PATH = SHARED + 'data/mozart/works/’

nn IIuPATHuTOuWWWu” nn
WWW _ROOT = '/var/www/’

il IllluSHARPEYEuHIIII
SHARPEYE CMD =\
'CScript.exe " %scode/musicXML /src/vbs/sharpeye.vbs" " %%s" %%i" % SHARED

SHARPEYE MRO TO XML CMD =\
'CScript.exe,," %scode/musicXML /src/vbs/sharpeye _mro_ xml.vbs"."%%s"" % SHARED

CLOSE_WINDOW CMD =\
'CScript.exe.," %scode/musicXML /src/vbs/close window.vbs" %%s" % SHARED

i SHARPEYE, SERVER,,"""

SHARPEYE SERVER INPUT = '%sworkdirs/%%s/input/ % SHARED
SHARPEYE SERVER_INUSE = "%sworkdirs/%%s/inuse/’ % SHARED
SHARPEYE SERVER DONE = '%sworkdirs/%%s/done/’ % SHARED

" OLISZT L (Windows—only) !

LISZT BIN_ PATH = 'C:/SharpEye2/liszt.exe’
LISZT CFG_PATH = 'C:/SharpEye2/configfile’
LISZT TMP_PATH = 'C:/SharpEye2/tmp/’

Analysis of Music Corpora 145 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

D.0.76 /src/calc_entropy.py

import os

from statistics.entropy import Distribution, Entropy
from music.chords import extract chords from xml
from graphics import plotting

chords = {}
all_chords = []

fnames = filter(lambda x: x.endswith(".xml"), os.listdir('samples/"))
for fname in fnames:
print ‘analysing,%s..” % fname

chords[fname] = extract chords from xml('samples/%s’ % fname)
all__chords += chords[fname]

print 'chords found:%i" % len(chords[fname])
print 'totalunumberyofuchords:%s" % len(set(all _chords))

calc entropies

entropies = |]

for fname in chords:
print fname
ent = Entropy()
entropies.append((ent.calc__entropy(chords[fname]),fname))

display sorted
entropies.sort()
for item in entropies:

print '%.4f, %s’ % (item)

Fumakebarplot

plot,,=uplotting.Plot()

plot.set width(8)
plot.bar([Lvalue foruvalue, Linuentropies])
plot.labels(map(lambda_x:,'MZ +x[4:],fnames))
plot.save('entropies.png’)

i

D.0.77 /src/pdf.py

Analysis of Music Corpora 146 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

from parsers import pdf
import 0s, 0s.path
from parsers import ocr

for name in os.listdir("C:/bach/"):
if os.path.exists('C:/bach/%s.xml" % name):
continue
if name.lower().endswith(".pdf’):
print 'processing%s.." % name
try:
xml = pdf.score_to xml(’C:/bach/%s" % name) or "'
file("C:/bach/%s.xml" % name, 'w’).write(xml)
except Exception,e:
print 'Exception:’, €

D.0.78 /src/mozart xml.py

from parsers import pdf
from parsers import ocr
import util.io

import os, os.path, sys

ROOT = 'Z:/data/mozart/’
BLOCK =5

def isint(s):
try:
int(s)
except:
return False
return True

names = sorted(filter(isint, os.listdir(ROOT)), key=lambda x: int(x))
for name in names:
path = ROOT + name
if os.path.isdir(path):
print '>>_%s’ % name
pages left = sorted(filter(lambda x: x.endswith(".bmp’), os.listdir(path)), key=lambda x: int(x.s
while pages left:
tmp_ dir = util.io.tmpdir()

pages, pages left = pages left[BLOCK], pages left[BLOCK:]
if len(pages) != BLOCK:

Analysis of Music Corpora 147 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

break
xml_file = "%s/%s.xml" % (path, pages[0])

if os.path.isfile(xml _file):
print 'skipping:’, pages[0], pages[—1]
continue

print ‘converting:’, pages[0], pages[—1]

copy pages to tmp dir
for page in pages:
page path = path + '/’ + page
data = file(page path,’rb").read()
file(tmp_dir + '/" + page.rjust(14, '0"), 'wb').write(data)

convert to music xml
xml = pdf.bmps_to xml(tmp_dir, check type='first’) or "
if xml:
print '>> SUCCESS.)’
else:
print '>>_ FAILED!:("
file(xml_file, 'w").write(xml)
Zutil.io.rmdir(tmp_ dir)

D.0.79 /src/calculate entropies.py

import os, sys
from database import x
from statistics import entropy

work _query ="

SELECT *,FROM_ Work

WHERE_EXISTS

Lu(USELECT %

LuuuFROM L Chord

LuuuWHERELL Chord.work ido=Work.idw)
ANDUNOTLEXISTS

Lu(USELECT %

LuuuFROMULLENntropy
LuouWHERELLEntropy.work ido=0Work.idw)
ORDER_BY/chords

Analysis of Music Corpora 148 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

works = Work().query(work _query)
for work in works:
chords = Chord().query(
'SELECT u*uFROMyChord uZWHERE_Chord.work _id=?_ORDER_BY_position’, (work.id,))
symbols = map(lambda c: c.symbol, chords)

sys.stdout.write('%4s,(%5i):" % (work.id, len(symbols)))

ent = entropy.Entropy()

for runlength in (1,2,3,4,5):
sys.stdout.write(".")
sys.stdout.flush()

value = ent.calc__entropy(symbols, N=runlength)
db__entropy = Entropy(work _id=work.id, method="simple’,
runlength=runlength, value=value)
db__entropy.save()
sys.stdout.write("\n")

D.0.80 /src/stats.py

import os, pickle

from graphics import plotting

from music import chords

from statistics.entropy import Entropy

stats = {}

try:

stats = pickle.loads(file('dumped’).read())
except Exception,e:

print

print stats
if not stats:
files = filter(lambda x: x.endswith(".pdf.xml"), os.listdir("C:/bach/"))
files = filter(lambda x: not x.endswith(' _001.pdf.xml"), files)
for i,name in enumerate(files):
path = "C:/bach/%s’ % name
print 'processing.,%4s.0f,%s:.%s..” % (i, len(files), name)

all_chords = chords.extract _chords_from _xml(path)
if len(all_chords) == 0:

Analysis of Music Corpora 149 Johan Sejr Brinch Nielsen
January 16, 2009

CHAPTER D

continue
file("graf—pdfs/%s’ % name[:—4],'wb") write(file(path[:—4], 'rb").read())
entropy = Entropy()
stats[name] = []
for i in xrange(1,4):
stats[name].append(entropy.calc _entropy(all _chords, N=i))

file("dumped’,'w’) . write(pickle.dumps(stats))

plot = plotting.Plot()
colors = ("blue’, 'red’, 'green’)

for i in xrange(3):
plot.set width(1)
plot.bar([stats[k][i] for k in stats], color=colors]i])

plot.labels(range(len(stats)))
plot.save('barplot.png’)

print stats

Analysis of Music Corpora 150 Johan Sejr Brinch Nielsen
January 16, 2009

	Introductory Theory
	Introduction
	Contributions
	Related Work
	Expectations of the Reader
	Overview

	Statistical Methods
	Statistics and Music
	Entropy
	Expanding the Entropy Model with History
	Generalising History
	Phenomenons
	Drawbacks

	Identifying Chords

	Implementation Details
	Overview
	Input Data
	Possible Music Databases
	International Music Score Library Project
	Mozarteum
	Conclusion

	Generating MusicXML from Scores
	Commercial Music OCR Software
	Converting scores to BMP

	SharpEye Pro
	Convert MRO files into MusicXML

	MusicXML
	A Simple Example
	Parts
	Measures
	Notes and Chords
	Infelicities of MusicXML

	Improving the Quality of Digitised Scores
	Extending segments vertically

	Database Selection

	Statistical Analysis
	Methods
	Interpolation
	Correlation

	Results
	Ordered by Year
	Ordered by Category
	Ordered by Length
	Conclusion

	Conclusion

	Work Categories
	Missing Works
	Implementation Details
	Ripping http://dme.mozarteum.net
	Crawling http://dme.mozarteum.net
	Converting JPG Pages to BMP
	Converting BMP Pages to XML
	Converting XML Pages to Chords
	Calculating Entropy from Chords
	Making Graphs from Entropy
	The Local Website

	Source Code
	/src/make_graphs2.py
	/src/start_bmp_to_xml.py
	/src/graphics/__init__.py
	/src/graphics/plotting.py
	/src/graphics/imaging.py
	/src/mozateum/__init__.py
	/src/mozateum/crawler.py
	/src/process_emtpy.py
	/src/ocr/server.py
	/src/ocr/__init__.py
	/src/mozart_xml_left.py
	/src/scan_image.py
	/src/database/__init__.py
	/src/database/test.py
	/src/database/models/chord.py
	/src/database/models/__init__.py
	/src/database/models/composer_resource.py
	/src/database/models/work.py
	/src/database/models/resource_group.py
	/src/database/models/resource.py
	/src/database/models/category.py
	/src/database/models/entropy.py
	/src/database/models/work_resource.py
	/src/database/models/composer.py
	/src/music/__init__.py
	/src/music/music.py
	/src/music/chords.py
	/src/extract_chords.py
	/src/mozart_xml_right.py
	/src/make_graphs.py
	/src/start_ocr_server.py
	/src/rip_mozart.py
	/src/update_page_count.py
	/src/vbs/__init__.py
	/src/statistics/__init__.py
	/src/statistics/correlation.py
	/src/statistics/entropy.py
	/src/imslp/__init__.py
	/src/imslp/crawler.py
	/src/crawl_mozart.py
	/src/crawl.py
	/src/mozart_bmp.py
	/src/crawl_mozart_works.py
	/src/update_site_values.py
	/src/test.py
	/src/update_K_nr.py
	/src/parsers/_xml/__init__.py
	/src/parsers/_xml/handler.py
	/src/parsers/_xml/traversers.py
	/src/parsers/__init__.py
	/src/parsers/ocr/__init__.py
	/src/parsers/ocr/sharpeye.py
	/src/parsers/mro/__init__.py
	/src/parsers/mro/handler.py
	/src/parsers/mro/traversers.py
	/src/parsers/pdf/__init__.py
	/src/util/__init__.py
	/src/util/io.py
	/src/util/ocr.py
	/src/util/imaging.py
	/src/util/pdf.py
	/src/entropy_test.py
	/src/mozart.py
	/src/supervisor.py
	/src/url/__init__.py
	/src/mozart_xml_back.py
	/src/config.py
	/src/calc_entropy.py
	/src/pdf.py
	/src/mozart_xml.py
	/src/calculate_entropies.py
	/src/stats.py

