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1 INTRODUCTION

Preface

This bachelor thesis was written at the Computer Science Department of the University of
Copenhagen Denmark, during the spring of 2008. The subject for this paper was inspired
by a guest lecture of Dorit Hochbaum which was held during the course �Introduction to
Optimization� in 2006, taught by professor David Pisinger.

I would like to thank my supervisor David Pisinger for taking this project under his
supervision and for his inspiration throughout the process. Also a great thanks to Dorit
Hochbaum for taking her time to give the guest lecture on the Close Rankings method
which was the inspiration for this project.

I would also like to thank my fellow student Jacob Bølling Hansen for revising the paper
from an academic point of view, and likewise my mother Lisbeth Brinch for revising the
paper from a linguistic point of view.

I would like to thank Anja Westh-Liljenbøl for lending me her book on Scienti�c Com-
puting, which contained a �ne description of both the Conjugate Gradient method and the
Golden Section Search.

My graditute to DIKU for putting the commercial solver CPLEX at my disposal and to
its IT-department for quickly correcting the CPLEX problems that occurred doing system
updates.

Finally, I want to thank every student and professor at DIKU who participated in the
survey which was used in the testing section.

1 Introduction

In the past couple of years websites have been increasingly focusing on user feedback. This
has led to a growth in the number of websites asking for user opinions, including sites that
allow users to express these opinions through voting.

As a consequence, the number of websites o�ering users the ability to share and vote
on content have experienced massive growth. Everything is now shared and rated on the
Internet, including articles, blog posts, videos and images.

In this paper I will focus on the websites o�ering image sharing and ranking. This
speci�c category within sharing has grown massively too 1. Even though some of these
image sharing services are quite advanced in other areas, using popular technologies such as
AJAX2, most of them are still using a simple method for ranking images. The consequence

1Today a search for ”‘Photo Sharing”’ returns 99.5 million hits on www.google.com and 31.8 million
hits on www.live.com

2Asynchronic Javascript And XML
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1.1 Relevant research 1 INTRODUCTION

is an unfaithful ranking that is easily manipulated and might not even support the users'
beliefs.

In this project, I will take a look at the most popular method used on websites today
and compare it to modern Group Ranking methods. In this process I will enlighten the
�aws of the simple method and show that more advanced methods can be used to provide
a more faithful ranking and at the same time show that it is possible to base the ranking
on more than just the weights provided by the users. I will show the possibility of ranking
by more variables, such as user rankings and the relevance of each vote.

Even though the motivation for this project urged from image ranking, the methods
used throughout the project is general Group Ranking methods. In fact, substituting the
word �image� with �music� might yield a �ne paper on ranking music. As a consequence,
the results in this paper apply to general Group Ranking and the methods discussed can
be used as such.

The source code produced and used throughout this project can be found at:
http://opix.dk/media/bachproj.tar.gz

1.1 Relevant research

Saaty (1997) proposed the Analytic Hierarchy Process (AHP), which was to become the
most used method for multicriteria decision-making. The core of this method was to �nd
an eigenvector that provided the vector of weights.

Keener (1993) discussed the pros and cons of intensity rankings and preference rank-
ings, and the importance of the Perron-Frobenius theorem concerning the criteria needed
in order to guarentee a positive solution to the eigenvector problem Ar = λr.

Page et al. (1999) published their famous Google PageRank in an attempt to change
the way websites were ranked. The motivation of the paper was to describe a method that
could rank websites objectively by measuring a surfer's interest in them. The idea of the
PageRank method is to structure the websites as a matrix, representing a �ow graph, and
then compute an eigenvector that provides the vector of weights.

Saaty and Vargas (1984) presented a model for solving the group ranking problem in a
way that minimizes the deviation between the solution and the preferred solution of each
user. They used the least-squares method to approximate the solution to the proposed
objective function.

Ali et al. (1986) presented a model based on Operations Research by minimizing the
deviation between the solution and the preferred solution among users. The problem is
de�ned using integer variables and was solved using a linear programming routine.

Chandran et al. (2005) proposed a linear programming approach to the model of Saaty
and Vargas. In the new formulation the objective function had been modi�ed in a way that
allowed for optimizations.

Levin and Hochbaum (2006) described a new model for solving weight-only and intensity-
only group ranking problems based on Operations Research. The model is a generalization
of previously proposed models, (Ali et al. 1986) and (Chandran et al., 2005), and allows a
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1.2 Overview 1 INTRODUCTION

more �exible ranking in that it introduces belief factors. The paper introduces an e�cient
method to solve the problem to optimality.

1.2 Overview

In section 2, I give a short informal description of the Image Ranking Problem followed
by the needed notation and terminology and then the formal description in section 2.3.
I describe the problems of Rank Reversal, Normalization and introduce the problem of
Newcomer's Rush; I give a generic workaround for both normalization and Newcomer's
Rush and describe why it is impossible to derive such a method with respect to Rank
Reversal.

In section 3, I describe the Average-Point method, the problems arising from using it
and �nally how some of these problems can be relaxed by using simple modi�cations.

In section 4, I show how the PageRank method can be used as a group ranking method
and later how it can solve the Image Ranking Problem. I describe the computations needed
to use the method and give a short but strict proof of why the computations terminate
and why the normalization described in (Page, 1999) can be skipped.

In section 5, I describe the Close Rankings method and show how this method can be
used to solve the Image Ranking Problem. I describe a problem in the way this method
compares rankings and propose a simple modi�cation that relaxes this problem. I then go
through the steps needed to transform the Close Rankings model into an unconstrained
convex minimization problem and show how this minimization problem can be solved using
the Conjugate Gradient method.

1.3 Contributions

I give a detailed description of how the PageRank method and the Close Rankings method
can be used to rank images in a much more dynamic way than the currently used Average-
Point method. I show how the Close Rankings method can be used to rank images using
both user rankings and vote relevance.

I introduce the Newcomer's Rush scenario and show how all three methods are a�ected
by this problem. Furthermore I give a workaround that relaxes the e�ects of Newcomer's
Rush.

When researching the PageRank method, I discovered a simple proof that the recursive
computations used to solve the method converge, something that was not in (Page, 1999).
I give a short description of the proof and show that the normalization described in the
pseudocode in (Page, 1999) is unnecessary when dealing with the Random-Surfer model.

I show that the Close Rankings method has a problem with the way it compares votes,
which implies that it might go in the complete opposite direction of what was intented
without being punished. I propose a simple change in the objective function of the opti-
mization problem which �xes this problem.

I show how the problem produced by the Close Rankings method can be solved using
the Subgradient method combined with Golden Section Search.
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2 THE IMAGE RANKING PROBLEM

2 The Image Ranking Problem

The Image Ranking Problem consists of ranking a number of images in a way that respects
the opinions of the users. The users can express these opinions by placing a vote on a
subset of the images, and hence express a preferred order of these images. The goal is
now to order the total set of images in a way that corresponds to the preferred order of
each user. Since it will be impossible to please every single user in any non-trivial instance,
the method that de�nes this ordering has to �gure out a way to please the users as much
as possible.

2.1 Notation

In this section I will introduce the notation used for accessing and working with set ele-
ments.

Si,j,...,k are the elements of the set S, that is associated with the objects i, j, . . . , k. E.g.
V u,i, u ∈ U, i ∈ I are the votes v ∈ V that is associated with user u and image i.

si is the ith element of S = {s1, s2, . . . , sn}.

min(S) is an element m ∈ S such that ∀s ∈ S : m ≤ s.

max(S) is an element m ∈ S such that ∀s ∈ S : m ≥ s.∑
(S) is the sum of all elements in the set S,

∑
s∈S s.

| S | is the number of elements in the set S.

|| V ||1 is the norm of the vector V ,
∑n

i=1 | Vi |.

avg(S) is shorthand for the average
P

(S)
|S| .

2.2 Terminology

In this section I will de�ne some terms that are used throughout the paper.

a “ranking relation” � is an order relation on S. An object si has a rank greater than
or equal to sj i� sj � si. An object si is said to have a strictly greater rank
than sj i� sj � si ∧ si 6� sj. The relation satis�es completeness, such that if
si, sj ∈ S then si � sj ∨ sj � si. Furthermore the relation is transitive, hence if
si � sj ∧ sj � sk ⇒ si � sk. I will say that two objects share rank, si =� sj,
i� si � sj ∧ sj � si. I will use the shorthand notation (x0, x1, . . . , xn)� instead of
x0 � x1 � . . . � xn.

to “rank” a set S is to de�ne a ranking relation, �, on S.
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2.3 Formalization of the Image Ranking Problem2 THE IMAGE RANKING PROBLEM

a “score relation” on a set S is a relation Sc : S → R. A ranking relation can be de�ned
from a score relation by si � sj ⇔ Sc(si) ≤ Sc(sj).

a “user” is a reviewer from classic group ranking theory. A ranking relation can be based
upon the users' opinions. I will let the set of all users be determined as U .

to “vote” is a way for a user to express how high a rank she believes a particular object
should have. Each user can only vote once on each object. A singe vote is a triple
(ui, sj, w) where ui is the voting user, sj is the object being rated and w is the weight.
The set of all votes will be determined as V . The phrase �to vote α on . . . � is short
for �to place a vote with weight α on . . . � and hence the two phrases can be used
interchangeably.

a “weight” is a real number, in this paper in the range [0..1] 3 that is given by a user on
an image trough a vote. The higher the weight is, the higher the user thinks that
the particular image should be ranked. The set of all weights will be determined as
W and the weight of a particular vote vr will be determined as w(v).

2.3 Formalization of the Image Ranking Problem

The Image Ranking Problem (IRP) is the problem of producing a ranking relation � on a
set of images I, given the following information:

1. The set of images, I

2. The set of users, U

3. A score relation from users into their scores: ScU : U → [0..1]

4. A set of votes, V : (Ui, Ia, w ∈ W ) ∈ V

5. A score relation from votes into their relevance ScV : V → [0..1]

I will call any method that produces a ranking relation � from the above information
an �IRP-method�. Such a method is very easy to derive, e.g. a method returning a random
ranking relation. However this method does not seem to actually solve the problem in
any useful way. The expectations to a solution is that it should respect the opinions of
the users. In particular, the ranking relation should rank the images in such a way that it
satis�es the users as much as possible.

3An alternative range [1..10] is used on a variety of websites, e.g. www.ratemypicture.com.
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2.4 A simple example 2 THE IMAGE RANKING PROBLEM

2.4 A simple example

In this section I will try to illustrate what an IRP method will have to take into account.
I have constructed an example of a simple IRP instance and discussed how this instance
can be ranked.

Example 2.4-1:

U/I 0 1 2 3

0 - 0.5 0.3 0.4

1 0.6 - - 0.8

2 0.5 0.8 - 0.6

3 0.6 0.7 0.7 -
An example of a simple IRP instance

The instance has 4 users and 4 images and a corresponding solution to the instance
could be the ranking relation (3, 2, 1, 0)�. This ranking relation places I0 highest, although
every user who has voted on I0 has voted lower on this image than on the alternatives. A
more fair ranking relation could be one that places I0 lowest and I1 highest, since everyone
who has voted on I1 has placed their highest vote on this image. This fair ranking relation
could now place I3 second highest, since U0 weigted this image heigher than I2. The
ranking relation would now be (0, 2, 3, 1)�.

2.5 Suggested properties of an IRP method

There are some properties that an IRP method should respect. These include normalization
and rank reversal (Hochbaum & Levin, 2006) but also the �Newcomer's Rush� problem.
In this section, I will outline these properties and the problems that can arise if they are
not achieved.

2.5.1 Normalization

Normalization or balancing is an attempt to address the problem of users only using a
subset of the weight interval.

An example could be a user that votes 1 (highest permissible weight) on every image
she reviews. Without normalization, an image reviewed by this user could stand a better
chance of getting a higher score than one not reviewed by this user. To overcome this
problem, the IRP method could interpret the user's voting as stating that the images
should share rank, since she has given them equal weights. If this is the case, I will say
that the IRP method supports normalization natively.

Another problem that may arise is an in�ation in the weights used. If many users have
an average above 1

2
it could lead to a higher average of all weights. A perfect normalization

would ensure an average of 1
2
together with a full coverage of the permissible scale.

However it is impossible to ensure both of these properties. When stretching the
weigths to �t the complete interval one removes the possibility of adjusting the average.
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2.5 Suggested properties of an IRP method 2 THE IMAGE RANKING PROBLEM

The original problem of normalization is to ensure that each user uses the complete scale
interval. Because of this, I have chosen to normalize in a way that ensures full coverage
of the scale, and hence leaves the average to the users.

Let u ∈ U and v ∈ V . The normalized weight norm(W )u,v of the original weight W u,v

can now be expressed as:

norm(W )u,v :=
(W )v −min(W )

max(W )−min(W )

This simple computation ensures that the complete interval is used, by subtracting the
minimum and dividing by the size of the used interval. The lowest weight will now be 0
while the highest will be 1. Hence, all scores are in the interval [0..1] and the complete
interval is used.

The normalization is only possible to compute when max(W ′)−min(W ′) 6= 0. How-
ever, when max(W ′)−min(W ′) = 0 the weights must be constant and hence stretching
the weights to the full weight interval is impossible. Instead normalization can be skipped
in this particular situation, leaving all the weights constant.

This normalization workaround is not a complete solution since it only stretches the
weights to �t the complete interval. Any user with at least one vote of weight 0 and at
least one vote of weight 1 will be left untouched by this normalization workaround. The
best situation would be for the IRP method to support normalization natively.

2.5.2 Prevention of Rank Reversal

Rank reversal as described in (Hochbaum, 2006) is the problem that a new image, with
low weights only, can swap images in the top of the ranking. Nearly redundant images
should not have the power to dominate the top of the rank. It is impossible to describe
a generic workaround to this problem, because it depends on how weights in�uence one
another, which will di�er from one method to the other. The IRP method will have to
support this natively.

2.5.3 Prevention of Newcomer’s Rush

Some IRP methods stabilize the ranks of the images over time, as more and more votes
are made, hence the higher the value | V i | the lower the e�ect of a vote on image i.
This may introduce a problem I have called the �Newcomer's Rush�. The problem is that
a new image, with a low count of votes, can rise to the top of the rank very fast because
of a small number of high weights. This problem can cause the top of a ranking to be
dominated by �newcomers�4.

A generic workaround for the Newcomer's Rush problem is to assign a default vote
to each image the user has not yet voted on. The weight of this default vote could be
the average of all the user's weights, avg(W u). Using this method, all the users who
have not yet voted on the new image would contribute to its rank using default votes. If

4hence the name, “Newcomers Rush”
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3 THE AVERAGE-POINT METHOD

avg(W u) = 1
2
for all users, the new image would have a lot of default votes with weight

1
2
, hence holding it back and preventing it from rising to the top.
However this might prevent new changes altogether in very large instances. The method

can be relaxed by only placing default votes from a selected number of users, e.g. log(n)
or
√

n users. This could lead to trouble, because the in�uence of the default vote would
change depending on the users selected. This problem can be solved by simply adding
control-users and have these assign the default votes with a weight of 1

2
(or perhaps a

weight matching the default over all weigths in the system).
However some methods rely on the rating of each user and adjusts a user's in�uence

accordingly. Default votes might work unexpectedly with such methods and should be used
with caution.

In this paper the instances are small, so the simple linear version of the method will be
used when nothing else is speci�ed.

3 The Average-Point Method

3.1 Group ranking using Average-Point

The Average-Point (AP) method is one of today's most popular group ranking methods5.
Its simplicity makes it easy to implement, but as we shall see in this section, this simplicity
leads to some serious problems.

The method works by producing a ranking relation � such that:

i, j ∈ I : i � j ⇔ avg(W i) ≤ avg(W j)

In other words, the method de�nes the rank of an image solely from the weight-average
of its votes.

I have ranked example 2.4-1 using the AP method:

Example 3.1-2:

U/I 0 1 2 3

0 - 0.5 0.3 0.4

1 0.6 - - 0.8

2 0.5 0.8 - 0.6

3 0.6 0.7 0.7 -

Sc 0.56 0.66 0.5 0.6
Example 2.4-1 from section 2.3 using the AP method

In this example, each user has added one image that she cannot vote on herself. User
U0 has contributed with image I0, user U1 with image I1 and so on. The last row shows

5The first ten results of a search for “rate my” on www.google.com yields 6 websites that obviously
uses the Average Point method. The resulting 4 sites does not have ranking.
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3.2 Image Ranking using Average-Point 3 THE AVERAGE-POINT METHOD

the scores of each image. Since this method uses these scores to produce the ranking
relation, the relation itself will be: (2, 0, 3, 1)�. Even though every user who has voted on
both I0 and I2 has chosen to rate I0 lowest, I2 ends up lowest in the �nal ranking. This
is due to one of the shortcomings of the AP method. The method does not compare
the vote to the user's other votes and misses out on this information. A vote of 6, when
compared to the user's other votes of 7 and 8 on the alternatives, might seem better than
a vote of 5 compared to 3 and 4. This problem is caused by the lack of normalization.

3.2 Image Ranking using Average-Point

In this section I will take a look at the properties suggested in section 2.5 and describe
how the AP method is in�uenced by them.

3.2.1 Normalization

The AP method itself does not provide normalization. However the generic normalization
workaround from section 2.5.1 can be used. As an example I have applied normalization
to example 2.4-1:

Example 3.2-3:

U/I 0 1 2 3

0 - 1 0 0.5

1 0 - - 1

2 0 1 - 0.33

3 0 1 1 -

Sc 0 1 0.5 0.61
Example 2.4-1 using the AP method with normalization

This results in a �nal ranking of (0, 2, 3, 1)�. The main di�erence from the previous ranking
is that I0 now has a lower score than I2. Apart from this, the scores are further apart from
each other, as a result of stretching the users' choices to �t the complete interval.

3.2.2 Rank Reversal

Since the AP method computes the scores of each image using votes on the particular
image only, it is not subject to rank reversal. This is a result of simplicity, since adding a
new image cannot in�uence the other images' scores in any way, hence it cannot in�uence
the other images' pairwise ranking.

3.2.3 Newcomer’s Rush

The AP method is subject to the Newcomer's Rush problem. To show this I have added
a new image to example 2.4-1:
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4 THE PAGERANK METHOD

Example 3.2-4:

U/I 0 1 2 3 4

0 - 0.5 0.3 0.4 1

1 0.6 - - 0.8 -

2 0.5 0.8 - 0.6 -

3 0.6 0.7 0.7 - -

Sc 0.57 0.67 0.5 0.6 1
Example 2.4-1 expanded with an extra image

The new image I4 only has a single vote and this vote now dominates its score, and
hence its ranking. The resulting scores show that the new image will take the lead in the
�nal ranking. This problem could be relaxed using default votes, as introduced in section
2.5.3. After normalization, the table would look like this:

Example 3.2-5:

U/I 0 1 2 3 4

0 - 1 0 0.5 1

1 0 - 0.5 1 0.5

2 0 1 - 0.33 0.44

3 0 1 1 - 0.67

Sc 0 1 0.5 0.61 0.6525
Example 3.2-4 with default votes and normalization

The new image is no longer the highest ranked, because it is dominated by the default
votes instead of a single vote. The high 1.0-weight does not dominate the ranking anymore.

4 The PageRank Method

4.1 Group ranking using PageRank

The Page-Rank (PR) method (Page, 1999) was originally developed to rank websites based
on their incoming hyperlinks. The method works by organizing every website in a directed
�ow graph, G = (VG, EG), so that the edge from (vi, vj) exists i� the website represented
by vi links to the website represented by vj. Let δ−(vi) denote all the incoming edges to
vi, and δ+(vi) denote all outgoing edges from vi. The �ow of edge (vi, vj) is now de�ned
as:

f(vi, vj) :=
1

| δ−(vi) |
describing how many percent of vi's �ow is propagated through vj.
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4.1 Group ranking using PageRank 4 THE PAGERANK METHOD

The main goal of this method was to propagate the ranking through the links in such
a way that an incoming link from a highly ranked website is worth more than one from a
lowly ranked website. The PageRank of a particular vertex is the sum of its incoming �ow:

PR(vi) =
∑

v∈δ−(vi)

f(v)

The result of the PageRank method is a vector of positive scores, where each score is
in the range [0..1]. The score vector is normalized and hence the sum of all scores is 1.

Since PR was originally intended for websites, which either linked to another site or
not, the weight set in this method is {0, 1}.

4.1.1 Random-Surfer model

The Random-Surfer model is used in the PR model to simulate the probability that a
surfer jumps to a random website, instead of following an outgoing link (Page, 1999).
The probability is determined by the factor d = 0.85, which states that the probability of
a user leaving the website through a link is 85% while the probability of a user leaving the
website by jumping to any known page is 15%. In particular, the PageRank of a vertex
while using the Random-Surfer model is:

PR(vi) =
d

N
·

∑
v∈δ−(vi)

f(v) +
1− d

N

where N is the total number of known websites.

The Random-Surfer model extends the original method in a way that eliminates �ow-
sinks, because all vertices have N outgoing edges, which ensures continuous distribution
of the �ow. It will also ensure that each vertice has at least 1−d

N
�ow to distribute, even if

it has no incoming edges, and hence no incoming �ow.

4.1.2 Computing the ranking relation

In order to compute the ranking relation using the PR method a score vector is computed
from the �ow matrix A, which is de�ned from the �ow graph. The score vector is computed
by computing the eigenvector of A, such that AR = λR (Page, 1999).

The power method (Leon, 2006) is used to iteratively compute the eigenvector, x1 of A.
If λ1, λ2, . . . , λn are the eigenvalues of A and x1, x2, . . . , xn the corresponding eigenvectors
and:

λ1 < λ2 ≤ · · · ≤ λn

the power method will approximate x1 from any non-zero vector R0, using the recursion:

Ri+1 =
A ·Ri

|| A ·Ri ||1
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4.1 Group ranking using PageRank 4 THE PAGERANK METHOD

The matrix A must have an eigenvalue λ1 which is strictly greater than any other
eigenvalue of A. It is shown by Perron's theorem (Leon, 2006) that any positive n × n-
matrix has such an eigenvalue. The random-surfer model ensures that all values of A are
at least d

N
, which implies that A is positive.

Each iteration can be done in two simple steps, the �rst being the calculation of the
product ARi, followed by normalization of the resulting vector. When dealing with the
PR method, this normalization can be achieved by simply maintaining the norm, since
|| R0 ||1 = 1. This can be achieved by adding (|| Ri ||1 − || Ri+1 ||1) · E to Ri+1, where E
is a normalized vector, e.g. R0. This will maintain a norm of 1 throughout each iteration.
This can be proved using simple induction over the number of iterations:
In the 0th iteration, R0 is normalized because

∑
R0 = 1.

In the ith iteration, let d := || Ri−1 ||1 − || Ri ||1 and || Ri−1 ||1 = 1 then:

|| Ri + d ·R0 ||1 = || Ri ||1 + || d · E ||1

= || Ri ||1 + d · || E ||1 = || Ri ||1 + d

= || Ri ||1 + || Ri−1 ||1 − || Ri ||1 = || Ri−1 ||1 = 1

Hence the norm is maintained in each iteration and the Ri vector is a unit vector.
However the factor d will always equal 0, because each element in A is in the range [1−d

N
..1]

(garenteed by the Random-Surfer model) and each of A's columns sums to 1:

d = || Ri−1 ||1 − || Ri ||1 = 1− || Ri ||1

Taking a closer look at || Ri ||1 yields:

|| Ri ||1 =
N∑

j=0

| Rj
i |=

N∑
j=0

Rj
i =

N∑
j=0

[A ·Ri−1]
j =

N∑
r=0

N∑
c=0

Ar,c ·Rc
i−1

=
N∑

c=0

N∑
r=0

Ar,c ·Rc
i−1 =

N∑
c=0

(Rc
i−1 ·

N∑
r=0

Ar,c) =
N∑

c=0

(Rc
i−1 · 1) = || Ri−1 ||1 = 1

It is now clear that d = 1 − 1 = 0 and that it is safe to skip the normalization step of
the algorithm described in (Page, 1999) when applying the Random-Surfer model. (Page,
1999) describes a method for applying custom user rankings when using the PageRank
method by changing the values of the vector E. The idea is that a value of E describes
the possibility of a random surfer choosing to visit its associated site. However, as we
have seen, E can be safely removed from the computations when applying the Random-
Surfer model. The conclusion is that the PageRank method does not support custom user
rankings when using the Random-Surfer model.

The criteria of the power method are satis�ed and the sequence {Ri} will converge
against the eigenvector x1, such that:

A ·R = λ1x1 = λ1R
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Perron's theorem states that the eigenvector R is positive and since it is also normalized,
we must have x ∈ R ⇒ x ∈ [0..1] which corresponds to the expected result of the
PageRank method.

The approximation will converge with the same speed as λ1

λ2
(Leon, 2006) . According

to (Page, 1999), the method uses roughly log(n) iterations when applied on a large graph
of websites. However the graph of websites is very sparse, and hence the computation will
converge faster than when used on a more complicated, dense graph. A pleasant property
is that choosing R0 close to x1 will ensure faster convergence. When dealing with ranking,
it is very likely that the instance has only gone through minor changes compared to the
size of the instance, and hence using the previous eigenvector when reranking the instance
might speed up the process signi�cantly.

When the score relation Sc has been computed, the ranking relation is easily de�ned
from it:

∀i, j ∈ I : i � j ⇔ Sc(i) ≤ Sc(j)

4.2 Image Ranking using PageRank

Since the PR method uses the weight set {0, 1}, it will need some modi�cation in order
to become an IRP-method. The �rst modi�cation will allow for weighted voting in the
interval [0..1]. The method uses the graph, G, to de�ne the �ow between vertices. In
the original PR method, the �ow of vi is shared equally amongst all websites that have
incoming links from vi. In order to allow weights in [0..1], this �ow has to be split unequally
in such a way that images with higher weights get more �ow. This can be done by de�ning
the �ow of edges so that:

f(V u∈U
G , V

{i|∃V u,i}
G ) =

d

N
· W u,i∑

(W u)
+

1− d

N

where VG refers to a vertex in G and V is the set of votes.
This will assign �ow to each image that user u has voted on. The �ow denotes how

many percent of the user's �ow the image should get.
Since images do not vote, they will give their �ow back to their owner. This prevents

the �ow from getting stuck:

f(V i∈I , V U i

) =
d

N
· 1.0 +

1− d

N

A problem arising is that an image will get a higher rank, no matter what vote a
user places on it. This is the result of more �ow passing through the image. In the
standard method, no vote implies a vote of 1−d

N
. Another related problem is that whenever

a user votes on a new image, this image gets some of the user's �ow, hence some of her
in�uence. The rest of the images that she has voted on will now get a lower score. In
order to workaround these problems, I will use default votes in this method, as described
in section 2.5.3.

To see how this method works, I have ranked example 2.4-1:
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Example 4.2-6:

U/I 0 1 2 3

0 - 0.5 0.3 0.4

1 0.6 - 0.56 0.8

2 0.5 0.8 - 0.6

3 0.6 0.7 0.7 -

Sc 0.115 0.140 0.113 0.132
Example 2.4-1 ranked using the PR method

The ranking relation derived from these scores is (2, 0, 3, 1)� and is identical to the
ranking relation computed using the normalized AP method. The PA method also returns
scores on each user, which can be used to rank the users. In this case, the users' ranking
relation is (2, 0, 3, 1)�. Since every user has added one image only, their scores equal the
score of this image and the ranking relation is identical to that of the images.

4.2.1 Normalization

The PR method does not support normalization natively, since it was designed for binary
weights7. Because of this, there was no need for normalization in the original method.
However, normalization can be achieved in the IRP method using the general normalization
method as described in section 2.5.1.

As an example of PR with normalization I have ranked the previous example with
normalization applied:

Example 4.2-7:

U/I 0 1 2 3

0 - 1 0 0.5

1 0.66 - 0 1

2 0 1 - 0.33

3 0 1 1 -

Sc 0.056 0.186 0.088 0.170
Example 5.2-6 with normalization

De�ning a ranking relation from these scores yields (0, 2, 3, 1)�. Notice how the two
lowest ranked images, I0 and I2, swapped when compared to the ranking relation achieved
without normalization.

When relating the scores of I0 and I2 to the �ow network of the PR method, one
notices that I0 is dominated by U1 and that I2 is dominated by U3. However, U1 will
obtain a higher score than U2 because of the high score of I1. Because of this, the vote
of U1 will have more in�uence than the vote of I3.

To show this, I have reranked the instance, setting WU1,I0 = 0.75:

7weights that are either 0 or 1
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Example 4.2-8:

U/I 0 1 2 3

0 - 1 0 0.5

1 0.75 - 0 1

2 0 1 - 0.33

3 0 1 1 -

Sc 0.083 0.180 0.080 0.149

Example 4.2-7 reranked with WU1,I0 = 0.75

The ranking relation is now be (2, 0, 3, 1)�. What looks like a minor change in a single
weight was enough to swap the ranks of I0 and I2. Notice how the U1 contributes with

75
75+100

≈ 43 percent of its �ow to I0 and that this is enough to beat the 50 percent with
which U3 contributes to I2.

4.2.2 Rank Reversal

The PR method does not prevent rank reversal. To illustrate how rank reversal can
in�uence the ranking when using the PR method, I have created a small example inspired
by the rank reversal example from (Hochbaum, 2006). I have ranked a small instance with
only 3 users and 3 images. Each user has one image, as in the previous examples:

Example 4.2-9:

U/I 0 1 2

0 - 0.5 0.3

1 0.5 - 0.5

2 0.3 0.4 -

Sc 0.160 0.186 0.154
A small 3 by 3 instance

The resulting ranking relation is (2, 0, 1)�. I will now add a new image to the instance.
The new image will have low votes only, hence the image should only have minor in�uence
on the resulting ranking relation:

Example 4.2-10:

U/I 0 1 2 3

0 - 0.5 0.3 0.1

1 0.5 - 0.5 0.1

2 0.3 0.4 - 0.1

3 0.8 0 0 -

Sc 0.172 0.148 0.121 0.058
Example 4.2-9 after adding a new image
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4.2 Image Ranking using PageRank 4 THE PAGERANK METHOD

Notice that the new user, U3, has obtained a very low score as a consequence of the low
rated image. However, the new ranking relation has changed to (3, 2, 1, 0)�, which shows
that I0 and I1 have swapped. The new user, with a low rank and a single lowly ranked
image managed to swap number 1 for number 2. However, user U1 could regain the �rst
place by simply boycotting the new user by voting 0 on her image. This would lower the
in�uence of user U3, and as a consequence lower the score of I0. In fact, this would lower
the score of I0 to 0.140 and at the same time raise the score of I1 to 0.157, hence swapping
the two users back in the ranking relation.

4.2.3 Newcomer’s Rush

The PR method does not prevent Newcomer's Rush, but the generic workaround for this
problem can be used as a partial solution. The workaround will keep back newly added
images to some extent, but the e�ect of the workaround will vary from case to case.
The reason for this is to be found in the way PR propagates the �ow. The workaround
addresses the problem by adding default votes that will keep back the rise of newly added
images. However, the e�ect of these default votes will depend on the user rankings.

When a new image is added to an existing instance, where the generic workaround has
been applied, it will get a default vote from every user. However as a result of dynamic
user scores these default votes will have di�erent in�uence. Because of this, it is hard
to predict how the instance will react to the new image. If a user with a high user score
assigns a high vote to the image, it could make the image rush to the top, if the other
users' scores are low enough.

If the owner of the new image now assigns a vote of 1 on the voting user's images and
a vote of 0 on every other image (to avoid the default votes), this would lead most of the
�ow back to the user who voted on the new image, hence the new image would get even
more �ow which leads to a higher score.

To illustrate this scenario, I have ranked an instance that expands from 4 to 5 users.
Below is the original normalized 4-users-instance:

Example 4.2-11:

U/I 0 1 2 3

0 - 1 .4 0

1 0 - .75 1

2 1 0 - 0.667

3 0 1 0.8 -

Sc 0.089 0.138 0.141 0.132
A normalized 4 users by 4 images instance

The corresponding ranking relation (0, 3, 1, 2)�. I will now add a new image, I4 and add
a vote of 1 from the highest ranked user, U2, to this image. Furthermore, to maximize
the �ow through I4, U4 will add a vote of 1 to I2 and votes of 0 to the other images:

Example 4.2-12:
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U/I 0 1 2 3 4

0 - 1 0.4 0 0.466

1 0 - 0.75 1 0.583

2 1 0 - 0.667 1

3 0 1 0.8 - 0.6

4 0 0 1 0 -

Sc 0.065 0.076 0.168 0.077 0.114
Example 4.2-11 after adding a new image

The ranking relation is now (0, 1, 3, 4, 2)�. Notice that I2 is still the highest ranked
image, but that I4 has managed to gain a second place. The other images have dropped
considerably in score, depending on how much �ow they are sending through I4. There
is a partial sink consisting of the images I2 and I4, and of the users U2 and U4. I call
this a partial sink because it leaks �ow to other images and users, while keeping a lot of
the �ow to itself in each iteration of the �ow-network computations. All this is happening
without U2 participating in any other way than placing a single vote. The partial sink itself
is established solely by U4.

5 The Close Rankings Method

5.1 Group ranking using Close Rankings

The Close Rankings (CR) method (Hochbaum, 2006) solves the general intensity-only
group ranking problem using methods from operation research. The method attempts to
minimize the distance between the �nal ranking and the ranking of each individual user.
This is achieved by de�ning an optimization problem that minimizes this distance.

Formally this problem is de�ned as:

Min
∑

i<j Fij(zij) (1)

subject to xi − xj = zij for i < j (2)

−n ≤ xj ≤ n j = 1, . . . , n (3)

where F is a convex function and xi is the score of image i.
After solving this optimization problem, the ranking relation � can be de�ned from the

x variables, which contain the scores:

Ii � Ij ⇔ xi ≤ xj

In (Hochbaum, 2006) the following convex function Fij is proposed:

Fij(zij) :=
∑
l∈L

Rl
i,j ·

(
Dl

i,j − zij

)2

where Ri,j is the rank con�dence, Di,j is the user's preferred di�erence of i and j. L is
the set of reviewers and zij is the di�erence variable to which the optimization solver will
have to assign a value.
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5.1.1 Proposed improvements

I have found a problem with the objective function proposed in (Hochbaum, 2006). The
function has the problem of not di�erentiating between a positive or negative di�erence.
Assuming some reviewer has chosen Di,j = 2. The contribution to the objective function
would be Ri,j · (2 − zij)

2. The problem is that (2 + 1)2 = (2 − 5)2 = 9. This might not
seem problematic at �rst, but notice that the contribution to the objective value is equal
whether the reviewer's chosen rank is reversed or not. In order to prevent this I have
chosen to modify the proposed function to the new function:

Fij(zij) :=
∑
l∈L

3

4
Rl

i,j

(
Dl

i,j − zij

)2
+

1

4
Rl

i,j

(
Dl

i,j + sgn(Dl
i,j)− zij

)2

where sgn(x) := x
abs(x)

. The new function rewards the objective value for choosing a
di�erence that corresponds to the direction the user has chosen. Examining the example
from earlier, we now get (Rl

i,j = 1):

3

4
(2 + 1)2 +

1

4
(2 + 1 + 1)2 =

3

4
9 +

1

4
16 = 6.75 + 4 = 10.75

whereas:
3

4
(2− 5)2 +

1

4
(2− 5 + 1)2 =

3

4
9 +

1

4
4 = 6.75 + 1 = 7.75

Intuitively this can be interpreted as placing 3
4
th of the relevance on the user's own

choice, and 1
4
th of the relevance on an exaggerated version of the same vote. This gives

the function a hint of direction.
This direction will only be computable for D 6= 0, since the sign function sgn is only

computable for x 6= 0. However when D = 0 the reviewer wants i and j to share rank,
hence there is no direction to hint and the original object function can be used in this case.

5.1.2 Computing the ranking relation

In order to compute the ranking relation using the CR method a score vector is computed
by solving the optimization problem introduced in section 5.1. To solve the problem, it is
�rst converted to an unrestricted minimization problem with a quadratic object function
(Hochbaum, 2006). This is done by simply substituting zij with xi − xj. This removes all
z variables from the problem and hence eliminates all constraints. In order to avoid the
remaining boundary constraints, −n ≤ xj ≤ n, x1 is �xed to 0, which guarentees that all
x variables are in this particular range (Hochbaum, 2006).

As an example of this conversion, consider the original optimization problem:

Min
∑

i<j Fij(zij) (4)

subject to xi − xj = zij for i < j (5)

−n ≤ xj ≤ n j = 1, . . . , n (6)

Image Ranking
using modern Group Ranking methods

21 Johan Sejr Brinch Nielsen
July 19, 2008



5.1 Group ranking using Close Rankings 5 THE CLOSE RANKINGS METHOD

This problem will be converted to:

Min
∑

i<j Fij(xi − xj) (7)

where x1 is replaced by 0. Since Fij is quadratic, the resulting function is quadratic separa-
ble and can be solved with any general method for unconstrained convex optimization. In
(Hochbaum, 2006), Newton's method and the conjugate gradient method are proposed.
Newton's method will yield the optimal solution in a single iteration, because of the func-
tion being quadratic. The conjugate gradient method will terminate after n lines' search,
using O(nk) time to compute the search direction in the k'th iteration and using a total
of O(n3) time.

The conjugate gradient method (Heath, 2002) has the advantage of using several
iterations, which can be used to speed up the process of reranking a previously ranked
instance, by using the previous solution to the instance as an initial solution. This might
speed up the process of reranking a previously ranked instance, if reranking is performed
adequately frequently.

The conjugate gradient method works by modifying the search direction from the sub-
gradient method that converges against the global minimum by subtracting the current
gradient from the current position. In order to describe the conjugate gradient method, I
start by explaining the subgradient method.

The subgradient method locates the minimum of the convex function f by repeating
the following iteration:

si := −∆f(xi)

xi+1 := xi + αsi

∆f is the �rst derivate of f , si is the i'th search direction, xi is the i'th point and αi is
the i'th stepsize.

This iteration looks rather simple, however there is the problem of choosing the value
of αi in each iteration. The aim is to choose this value in such a way that f(xi + αsi) is
minimized. So far, I will ignore this and say that αi minimizes this expression in each iter-
ation and instead move on to show how the iterations can be expanded into the conjugate
gradient method. I will however return to the subject and explain how αi can be chosen
using golden section search.

The conjugate gradient method works like the subgradient method, except in the way
the search direction, si, is chosen. Initially s0 is set to the negative derivate, −f ′(x0). In
each iteration, the quantity βi is computed, and the new search direction si can is now
computed as si := −f ′(xi) + βisi−1.

The iteration of the conjugate gradient method is:

xi+1 := xi + αi · si

gi+1 := ∆f(xi+1)

βi+1 :=
gT

i+1 · gi+1

gT
i · gi

Image Ranking
using modern Group Ranking methods

22 Johan Sejr Brinch Nielsen
July 19, 2008



5.2 Image Ranking using Close Rankings 5 THE CLOSE RANKINGS METHOD

si+1 := −gi+1 + βi+1 · si

where s0 := −∆f(x0).
The conjugate gradient method has a running time of O(n) iterations where n is the

number of dimensions. However this running time depends on αi minimizing the expression
f(xi+αi·si) a one-dimensional minimization (only variable being αi), which can be achieved
using golden gection search.

The golden section search is a one-dimensional minimization method that has the
advantage of only recomputing the function value in one point in each iteration. This can
be achieved by computing the function values in a, x1 and b such that a < x1 < b. The
point, x2 is now chosen from the largest interval of [a, x1] and [x1, b]. As an example, say
that x2 is chosen from [x1, b] and let the minimum of the interval [a, b] be δ, then:

f(x1) < f(x2) ⇒ δ ∈ [a, x2]

f(x1) > f(x2) ⇒ δ ∈ [x1, b]

Let [ai, bi] be the interval in iteration i. In each iteration, we change either ai or bi

moving the two points closer to each other. We also have that ai < bi in each iteration.
Hence bi−ai must converge against 0, therefore [ai, bi] must converge against some point
ε. Since the iteration invariant states that [ai, bi] will contain the minimum, this minimum
must be ε and hence δ = ε.

The remaining problem is that the golden section search (so far) might not converge
at a consistent rate. To ensure consistent convergence we need to reduce the length of
the interval by the same fraction at each iteration. This can be achieved by �xing the
relative positions of the two points x1 and x2 to τ and 1− τ , with τ =

√
5−1
2

. This choice
ensures that the new subinterval chosen is τ relative to the previous interval, and that the
interior point will be at position τ or 1− τ relative to the new interval.

This ensures a steady convergence and gives us the needed optimization for the con-
jugate gradient method.

5.2 Image Ranking using Close Rankings

The CR method is easily applied as an IRP method. The only change that has to be made
is in the de�nition of the Fij function. This function will now have to use the variables
available in the IRP. Given a pair of images, i, j ∈ I, it will need to compute the sum of
the weight di�erences for each user, Du

i,j := W u,i −W u,j factored by the vote relevance,
Ru

i,j. The function can now be de�ned as:

Fi,j∈I(zij) :=
∑
u∈U

(3

4
Ru

i,j

(
Du

i,j − zij

)2
+

1

4
Ru

i,j

(
Du

i,j + sgn(Du
i,j)− zij

)2)
As an example of a ranking produced by this method, I have ranked example 2.4-1

(Ru
i,j = 1):

Example 5.2-13:
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U/I 0 1 2 3

0 - 0.5 0.3 0.4

1 0.6 - - 0.8

2 0.5 0.8 - 0.6

3 0.6 0.7 0.7 -

Sc 0 0.481 0.044 0.325
Example 2.4-1 ranked with the CR method

The ranking relation produced from these scores is (0, 2, 3, 1)�. This ranking relation
is equal to the ranking relation achieved using the AP method with generic normalization
applied.

5.2.1 Differentiating rankings using confidence factors

So far, I have ignored the rank con�dence factor, R, by �xing it to 1. The rank con�dence
factor is used to scale the penalty of each rank comparison in the objective function, to
allow more di�erentiated rankings.

Each con�dence factor is in the range [0..1] and it is possible to associate such a factor
to any or all comparisons. Because the con�dence factors can di�er for each comparison,
they can be used to respect the relevance of each particular vote. This can be achieved
by simply de�ning the con�dence factors from the relation from votes into relevances.

The score relation can be de�ned by any variable associated with votes. In this paper,
I will look at a function de�ned by the age of the two votes compared in days, Av and the
rank of the voting user. The rank of the voting user can be used directly, as it is a number
in the range [0..1]. However using the age of a particular vote needs a little more work, as
it can be any positive number.

I will start by de�ning a function, AR, that converts a given age in days into a usable
relevance in the range [0..1]:

a < 10 ⇒ AR(a) = 1

a ≥ 10 ⇒ AR(a) =
1

log10(a)

I can now de�ne the con�dence factor Ru
ij as follows:

Ru
ij = ScUu · AR(AV u,i

) · AR(AV u,j

)

This will ensure that all votes older than 10 days will start to loose in�uence as a
function of their age. I have chosen to use the logarithmic function, in order to ensure
that the rate which the in�uence is reduced slows down by time. This ensures that the
vote will never loose all its in�uence. As an example, a vote which is 14 days old will loose
13 percent of its in�uence one that is 30 days old will loose 32 percent of its in�uence and
one that is 365 days old will loose 61 percent of its in�uence.

This kind of di�erentiated ranking could be interesting in systems that want to focus
on the newest trends among users by giving newer votes more in�uence than older votes.
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(Hochbaum, 2006) proposed that con�dence factors could be de�ned by the di�erence
D in the particular vote, such that a higher value of D ment a higher con�dence. This
would imply that votes with higkh intensities would be given more con�dence.

Another way of di�erentiating could be by de�ning the con�dence factor from the
number of categories shared by two images. A comparison between two di�erent portraits
could gain more in�uence, than one between a portrait and a landscape photography. One
could go even further and say that a comparison between two portraits of the same person
should gain even higher in�uence. This method allows one to �lter out comparisons,
that might have no relevance at all. It might be meaningless to compare a portrait to a
landscape photography, and hence the competition between such two images might not
be interesting. This method allows the system to compensate for such situations in a
well-de�ned manner.

5.2.2 Normalization

The CR method ensures normalization because it converts the given weights into distances
between images before ranking. Because of this, it does not matter whether a user only
uses a subset of the weight interval, since the weights are not used directly.

5.2.3 Rank Reversal

The CR method has a native feature to prevent rank reversal (Hochbaum, 2006). This
works by simply adding constraints of the form xi ≤ xj, where xi has a lower rank than
xj in the original ranking. By doing this, the original ranking is locked while ranking new
images. The problem with this method is that it only works as long as the original images
do not need to be reranked. The method will not work if the original ranking is supposed
to change, hence this method will not work in any dynamic system. Since image ranking,
as described in this paper, is very dynamic (users can change a vote whenever they like)
there is no way to prevent rank reversal using this method.

5.2.4 Newcomer’s Rush

The CR method does not prevent the Newcomer's Rush problem. If only one user has
voted on an image, this vote will dominate the rank of the image. However, because
of normalization the vote will have to be high compared to the user's other votes. This
problem can however be relaxed by using the default votes method as described in section
2.5.3. Since the CR method uses the distances between the weights, and not the weights
themselves, this would imply that images that a user has not yet voted on should be ranked
equally.
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6 Comparison of Ranking Methods

In this section I will compare the three ranking methods, by ranking di�erent types of
instances. The purpose is to illustrate the di�erences between the three methods, while
discussing the pros and cons associated with each one of them.

The instances I have chosen to discuss are 1) the simple instances, where the ranking
is based on weights-only, hence ignoring user rankings and vote relevance, and 2) the more
advanced instances, where user rankings and vote relevance are taken into account.

The instances ranked in this section are more realistic than those ranked earlier in the
paper, as they will have more than just one image per user.

In the comparisons the AP method and the PR method are used with normalization
applied. The CR method is used with the modi�cation proposed in section 5.1.1.

To ease comparison between methods, I list the ranking relation for each method
instead of the individual scores.

6.1 Ranking simple instances

When ranking simple weight-only systems with no user rankings nor vote relevance, the
AP method and the PR method will return ranking relations that are similar. The �ow in
the PR method might have some e�ect, but the two methods are very similar in the way
they rank each individual image. The main di�erence is the PR method's dynamic user
rankings.

The CR method might give a very di�erent result, since it ranks the whole system at
once and hence tries to respect all votes at once, not looking at any individual image at
any time.

Example 6.1-14 is a ranking of an instance with 5 users who have submitted a total of
12 images. Each user has voted on every image, except for her own:

Example 6.1-14:

U/I 0 1 2 3 4 5 6 7 8 9 10 11

0 - 0.7 0.6 0.8 0.4 - 0.8 0.5 0.7 0.4 - 0.7

1 0.9 - 0.1 0.5 0.5 0.8 - 0.3 0.7 0.9 0.7 -

2 0.3 0.6 - 0.5 0.1 0 0.5 - 0.1 0.8 0.3 0

3 0.1 0.3 0.2 - 0.6 0.8 0.6 0.1 - 0.8 0.7 0.7

4 0.7 0.7 0.2 0.4 - 0.4 0.4 0.8 0.9 - 0 0.1

AP 7 5 12 4 11 6 2 10 3 1 8 9

PR 7 5 12 4 11 6 3 10 2 1 8 9

CR 7 2 12 5 10 6 3 11 4 1 8 9
A dense 5 users by 12 images instance.

The last three lines show for each method the image's position in the ranking relation.

Notice the similarity between the ranking relations produced by the AP method and
the PR method. The only di�erence here is whether I8 or I6 should be number 2. The CR

Image Ranking
using modern Group Ranking methods

26 Johan Sejr Brinch Nielsen
July 19, 2008



6.2 Ranking with user rankings 6 COMPARISON OF RANKING METHODS

method is a bit more di�erent, but this is mainly because it sets I1 as number 2, hence
shifting the rest of the ranking relation.

It is very di�cult to see why the three methods di�er the way they do, because of
the complexity of the PR and CR methods. However, it is possible to investigate how
much they di�er. One interesting number to compare is the number of pairwise preference
reverses, when comparing the �nal ranking relation to each user's preferred ranking relation.
This method is used in (Hochbaum, 2006) as part of the discussion of the CR method.
The following table shows the number of pairwise preference reverses for each method:

AP PR CR CR′

76 77 74 75

The Close Rankings method has managed to reverse less user preferences than the
other methods, by placing I1 at number 2. It is not surprising that CR does well in this
test, since it is the only method that ranks by trying to lower the number of preference
reverses. The CR′ entry represents the original Close Rankings method as proposed in
(Hochbaum, 2006) without the modi�cation suggested in section 5.1.1. Applying the
modi�cation will result in the reversion of one less pairwise comparison.

6.2 Ranking with user rankings

In this section I introduce a vector of user scores and rerank the instance used in section
6.1. I will rerank the instance using the CR ranking method only, since it is the only
method among the three ones discussed methods that supports custom user scores. The
user scores are de�ned in the vector R:

ScU = {(U0, 0.8), (U1, 0.3), (U2, 0.5), (U3, 0.2), (U4, 0.6)}

After reranking the instance with these scores, the following result is achieved:

Example 6.2-15:

M/I 0 1 2 3 4 5 6 7 8 9 10 11

AP 7 5 12 4 11 6 2 10 3 1 8 9

PR 7 5 12 4 11 6 3 10 2 1 8 9

CR 6 1 12 5 11 8 2 7 3 4 10 9

The most signi�cant change is that I1 is now the highest ranked by CR, while I9 has
dropped to number 4. This change can be explained by looking closer at the chosen user
scores. Notice that U0 and U4 are the highest ranked users and that they both have a fairly
high vote on I1. U0 has the highest in�uence, and also the largest positive value for the
z19 variable in the CR objective function, namely 0.7− 0.4 = 0.3. In short, the users who
preferred I1 to I9 have been given a high rank. As a result of respecting the user scores,
the number of pairwise preference reverses has increased to 80. However, if one adjusts
the counter to respect user scores, by adding the user score to the counter instead of 1,
then we get the following result of pairwise preference reverses:
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6.3 Ranking with vote relevance 7 TESTING RUNNING TIME

AP PR CR

39.8 37.4 35.8

As can be seen, the numbers of pairwise reverses are quite close, even though the CR
method has changed to re�ect the user rankings, while the other methods have not. The
PR method and the CR method deviate by 4.5% against the 4.1% earlier.

6.3 Ranking with vote relevance

I will now rerank the instance from section 6.2 with vote relevance, by �rst assigning an age
to each vote, and then de�ning the relevance from the ages using the function introduced
in section 5.2.1.

The ages have been chosen in a way that should in�ict a change in the position of I1.
In order to achieve this, the votes on I1 have been given ages according to their weights,
such that votes with high weights are old, while votes with low weights are young. The idea
is that I9 will regain the highest rank, because the old votes on I1 will have low relevance.

The ages can be seen in the following table:

U/I 0 1 2 3 4 5 6 7 8 9 10 11

0 - 240 55 131 0 - 3 91 11 85 - 25

1 22 - 12 87 12 23 - 64 20 17 8 -

2 91 150 - 41 5 39 6 - 31 6 23 18

3 9 7 3 - 3 8 4 191 - 10 1 9

4 11 129 8 19 - 12 23 101 44 - 12 52

Below is a table of the ranking relation produced by CR, CR with user rankings and
CR with both user rankings and vote ages:

Example 6.3-16:

M/I 0 1 2 3 4 5 6 7 8 9 10 11

CR 7 2 12 5 10 6 3 11 4 1 8 9

CRu 6 1 12 5 11 8 3 7 2 4 10 9

CRu,v 6 3 12 5 11 7 2 8 4 1 10 9

As a consequence of the carefully placed ages, I9 has regained the highest rank while I1

has dropped to a third place. This example shows how the CR method can be in�uenced
by any factor that can be described as a parameter of a user and an image pair. In this
case, I chose to use the ages of each vote, but there is no limit to how complex the ranking
could be made using this simple approach.

7 Testing Running Time

In this section, I will test the practical running time of the PageRank method and the Close
Rankings method, when modifying the instance beeing ranked. The purpose is to �nd out
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how many iterations the two methods would need in order to rerank a previously ranked
instance when this instance has undergone a slight change.

When ranking example 6.1-14 the PageRank method used 42 iterations, while the Close
Rankings method used 5. The two methods both have a running time of O(i · n2) where
i is the number of iterations, which makes the number of iterations interesting, since this
is what distinguises the two running times.

I have reranked example 6.1-14 after changing 1, 2, 4, 8, and 16% of the votes using the
solution from the original problem as the initial solution. The number of iterations used
to rerank the instance is shown in the following table:

M/P 0% 1% 2% 4% 8% 16%

PR 1 5 5 7 9 5

CR 1 4 4 4 4 5

Both methods use very few iterations to adjust to previous solution to the changed
instance. However, the instance is quite small. To test this on a larger scale, I have created
a randomly generated instance with 50 users and a total of 500 images. The CR method
used 4 iterations when ranking this instance the �rst time, while the PR method used 46
iterations.

M/P 0% 1% 2% 4% 8% 16%

PR 3 3 3 3 4 1

CR 1 4 2 4 4 2

None of the methods use anything near the original number of iterations, when reranking
the instance. Both methods use less than 4 iterations to adapt the solution to the new
instance. As can be seen, the CR method performs very well on this instance, using only
4 iterations against the PR method's 46.

The implementations used in this paper are very simple, both being almost direct
implementations of the pseudo code. Because of this, the number of iterations might be
dramatically higher than the number needed in an optimized implementation. Especially
the performance of the CR method might be improved by use of optimization heuristics
and cuts.

8 Real Life Example

In order to provide a real life example I have created a survey regarding the teaching
quality provided by lectures and professors at DIKU 8. The survey was very simple. All the
participant had to do was to inform how many times she had been involved in a course or
project where the lecture or professor has participated in the teaching.

The result is collection of votes on 14 teachers by 79 students. In this section I will
rank this data in order to �nd the students favourite teacher.

8Computer Science Department at the University of Copenhagen

Image Ranking
using modern Group Ranking methods

29 Johan Sejr Brinch Nielsen
July 19, 2008
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I will start by ranking the data by transforming it into an Image Ranking Problem. The
instance will consist of 14 images (on for each teacher) and 80 users (1 for each student
and 1 to image parent).

In order to simplify the comparisons I will only compare the top �ve of the �nal ranking
relations. To ease reading I will use abbreviations of the names. The full list of names,
including their abbreviations, can be found in appendix A.1.

This ranking gave the folling relation when using the AP method with normalization,
the PR method with normalization, the CR method with the modi�cation suggested in
section 5.1.1 and �nally the CR′method without the modi�cation:

AP PR CR′ CR

DP DP DP DP
MZ MZ JGS MZ
JKS NA MZ JKS
NA JGS NA NA
FH FH FH FH

The rankings are very similar in that every method has chosen to build the top �ve
from the teachers {DP, MZ, JGS, NA, FH}. Another similarity is, that each method has chosen
DP as number one, and FH as number 5. One di�erence that is interesting is that CR′

has chosen JGS as number two, while CR has chosen MZ. The small modi�ciation in the
objective function has swapped number two with number three. A signi�cant di�erence.

The following table shows the number of pairwise preferrence reverses:

AP PR CR′ CR

3375 3386 3379 3376

The three methods are again very simlilar. Only the PR method deviates with a higher
number of reverses. The CR and CR′are only 3 reverses apart, yet these 3 reverses are
spared by swapping two of the highest ranked �images�.

But who was in fact the best teacher? Who was most liked by the students? Well, in
this ranking, students who has not even met the teacher they are voting on would count as
much as the student who had had several courses with this teacher. However, I did collect
information about the number of courses each participant had had with each teacher. I will
now use this information to de�ne the belief factor of each vote in the CR and CR′method.
I de�ne the belief factor of each vote as the number of courses taken by the participant
and teached by the teacher divided by 25 (the maximum):

ScV vu,p

=
Cu,t

25

where u is the participating user, t is the teacher and vu,p is the vote by u on p (e.g. if
user u0 votes on t0 and has had 4 courses related to this teacher the belief of this vote
would be 4

25
).

In order to determine the belief factor of a comparison we simply the belief factor of
each teacher being compared.

The top �ve result of this CR ranking is:
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CR′ CR

JGS DP
DP JGS
JSP JSP
NA JSA
JSA NA

These ranking relations are quite di�erent from the previous relations. The teachers
{JSP, JSA} is now part of the top �ve instead of {FH, MZ}. An interesting observation is
that the modi�cation in the objective function has placed DP as number one instead of
JGS.

The conclusion on this ranking is, that the students favourite teacher is DP closely
followed by JGS. However everyone who made it to the top �ve is of course well liked.
The full ranking relation can be found in appendix A.2

9 Future Applications

The following two case studies is not test cases but rather a look at future applications
for the Group Ranking methods discussed. They do not include any ranking at this stage
but could very well lead to interesting appliances in the near future.

9.1 The AES Selection Process

In 1997 the National Institute of Standards and Technology of the USA (NIST) launched a
series of conferences in order to select an encryption algorithm as the Advanced Encryption
Standard (NIST, 2000).

More than 20 years earlier, NBS (now known as NIST) selected the Data Encryption
Standard (DES). However, improvements in technology and computation power demanded
a more secure standard.

In the year 2000, NIST selected the block cipher Rijndael as the AES. Rijndael was
selected from a pool of �ve �nalists and the selection was based on massive amounts of
cryptanalysis, comments from cryptoanalytics and �nally votes from the AES conference
attendees.

In this section I will take a look at the voting process described in (NIST, 2000) and
show how the Close Rankings method could be used in such a voting process.

At the �nal conference there was 246 attendees from which 167 voted. The vot-
ing process worked by having each attendee �ll out a form which including the following
questions:

1. If NIST selects one (1) algorithms for the standard, which one should it be?

2. If NIST selects two (2) algorithms for the standard, which two should it be?

3. If NIST selects three (3) algorithms for the standard, which three should it be?
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4. If NIST selects four (4) algorithms for the standard, which four should it be?

The idea was to get a good picture of each attendees beliefs, hence to establish a
preferred ranking relation for each attendee.

To simplify this section, as it is just a case study, I will only look at the results from
the �rst question and discuss how the Close Rankings method could have been applied.

The vote count of the �rst question can be seen in the following table:

Algorithm Votes

MARS 13

RC6 23

Rijndael 86

Serpent 59

Two�sh 31

According to this vote count Rijndael has won the compitition. However, if each at-
tendee had provided a full preferred ranking relation the scores might have looked di�erent.

Lets say that everyone who did not choose Two�sh as number one chose it as number
two and that everyone who did not choose Rijndael as number one chose it number �ve.
This would result in 126 preferred ranking relations with Rijndael as number �ve, 181
ranking relations with Two�sh as number two and 31 ranking relations with Two�sh as
number one. This might have resulted in Two�sh winning over Rijndael. I will not rank
this data to check whether Two�sh would actually win, because the data is just imaginary
and contradicts the actual results presented in (NIST, 2000).

It does however prove my point. When ranking something as important as the AES
candidates, one should not rely on simple ranking methods, such as human evaluation of
votes. Also, when there are just �ve candidates it is possible to ask each attendee for a
preferred ranking relation. The �nal ranking relation can then be computed by a group
ranking method that respects the preferred ranking relation of each attendee, such as the
Close Rankings method. One could even adjust the belief factor according to the amount
of experience in cryptanalasis each attendee has.

To be fair, the AES competition ended 5 years before the publication of the Close
Rankings method. However one can hope that newer group ranking methods will be used
in the upcomming SHA-3 competition (NIST, 2007).

9.2 The Netflix Competition

Net�ix9 is a multinational online DVD rental service. In October 2006 they launched an
interesting competition which invited everyone with an interest in statistics to try and solve
one of Net�ix's computation hard problems: �nd out what the users want10.

All participants are given a rather large dataset listing users together with their votes on
movies. The dataset includes 480189 users and 17770 movies. The dataset also includes

9www.netflix.com
10www.netflixprize.com
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a listing of user votes without weights. The problem is now to assign the correct weights
to these movies, hence to predict future user ratings based on their previous ratings. In
order to win the main prize of 1 million dollars, the result has to be more than 10% better
than Net�ix own system, which is currently a straightforward statistical linear model.

I believe that the Close Rankings model could be used for this particular problem. The
idea is to compute the personal ranking relation for each user based on the movies this
user has rated. Let such a user be U0.

This ranking relation can now be expanded with a movie that U0 has not yet rated.
Because U0 has not rated the new movie, there will be no connection between this movie
and those in the original relation.

This problem can be solved by using the preferred ranking relations of the other users.
Simply �nd the set of users who has rated both the newly added movie and some other
movie rated by U0 and add them to the system.

When adding the preferred pairwise rankings of a new user we will only need to add
those preferred pairwise rankings that include both the new movie we want to predict the
ranking of and some other movie that U0 has ranked. The con�dence of this particular
pairwise preferrence could be de�ned by the di�erence between the pairwise rankings U0

has chosen for the shared movie and those the new user has chosen.
In fact, this idea just uses the Close Rankings method together with transitivity to

predict the users ranking of the new movie.
In short the method for predicting Ui's ranking of movie Mj could be described as

follows:

1. compute Ui's ranking relation of all movies Ui has rated

2. add Mj to the problem instance

3. add preferred pairwise rankings for all users, u ∈ U\{i}, who has voted on movie Mj

and on at least one movie that Ui has voted on

4. set the con�dence of each new pairwise ranking according to the di�erence between
Ui's preferred pairwise rankings and the new users' preferred pairwise rankings

5. set the con�dence of pairwise rankings by user Ui to the highest possible (or simplify
the problem by �xing them)

The only problem with this method is the humongous amount of computation power
needed. Consider a user who has voted on each of the 17770 movies. The object function
of the Close Rankings problem would now contain:

17769∑
i=1

i =
17769 ∗ (17769− 1)

2
= 157859796

terms. It might be possible to reduce this problem to a simpler one, but remember that
this is just the problem of computing the �rst ranking relation. After this is the problem of
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expanding this instance with one more movie and who knows how many users and pairwise
rankings.

However i do believe that if anyone solves these computational problems they will stand
a good chance of bringing home the main prize.

10 Conclusion

I have given a formalization of the Image Ranking Problem and discussed the problems
that might arise when trying to solve this problem fairly.

When analysing the Average-Pont method, I discovered that this method lacks nor-
malization and that it does not prevent the problem of Newcomer's Rush. However it was
possible to apply the generic workarounds for both problems.

I managed to convert a weight-only group ranking problem into a graph problem that
could be solved by the PageRank method. During my analysis of this method I found a
simple proof that the computations associated with this method do in fact terminate. As a
result I could formulate another proof that some of the lines of the pseudo code presented
in (Page, 1999) could be skipped safely.

During my study of the Close Rankings method, I discovered a �aw in the way it han-
dles pairwise comparisons. I have given a simple modi�cation that relaxes this �aw.

I have shown that all three methods discussed in this project rank on di�erent back-
grounds. The simpliest is the Average-Point method that only uses the weights to rank
the images. The PageRank method expands this by letting weights placed by users, who
themselves have highly weighted images, count more. Finally the Close Rankings method
generalize this concept by allowing a con�dence factor to be placed on each comparison
of two votes.

I have discussed future appliances where it would be interesting to see the Close Rank-
ings method at work. I have discussed how this method could be used in competitions
like the AES selection process. I have also discussed how this method might be used to
win the Net�ix competition and given an example of how the problem for this competition
could be formulated.

With respect to future research it would be interesting to see how the close rankings
method would perform in a true web environment. Perhaps to see an implementation
that would allow web developers to use this method for ranking without too much hazzle.
This would include e�cient implementation of the conversion from weights to intensities
together with extraction of data from popular database management systems (DBMS).
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Also, it would be interesting to investigate the possibilities of the PageRank method.
Speci�cally the possibility of implementing custom user rankings. This might be possible
with the use of a big brother node. Each image could then share part of its �ow with the
big brother node, and afterwards using the big brother node to redistribute this �ow in a
prioritized manner.

Finally I can conclude that the the three methods rank very similarly on simple systems.
There are di�erences, but these might not be signi�cant enough to compensate for per-
formance issues when comparing with the speed of the Average Point method. However if
a more �exible ranking method is needed, the Close Rankings method is recommendable.
The con�dence factors on each pairwise comparison make this method the most �exible
of them all. I would say that the Close Rankings method is the answer to my original
Problem Speci�cation. It certainly was possible to solve the Image Ranking Problem while
respecting the voting users' rankings together with the relevance of each vote and the
trend amongst all users.
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A Real Life example

A.1 Teacher list

This is the complete list of professors and lectors with their abbreviations:
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GS Georg Strøm

DP David Pisinger

BV Brian Vinter

FH Fritz Henglein

JSA Jørgen Sand

JGS Jakob Grue Simonsen

JSP Jon Sporring

EJ Eric Jul

MZ Martin Zachariasen

AF Andrzej Filinski

JJK Jyrki Juhani Katajainen

PB Philippe Bonnet

RG Robert Glück

NA Nils Andersen

A.2 Full ranking relation

The following table shows the full ranking relation computed using the CR method:

1 DP
2 JGS
3 JSP
4 JSA
5 NA
6 BV
7 FH
8 AF
9 RG
10 MZ
11 JJK
12 GS
13 EJ
14 PB
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